Active Learning Classification from a Signal Separation Perspective
- URL: http://arxiv.org/abs/2502.16425v1
- Date: Sun, 23 Feb 2025 03:47:03 GMT
- Title: Active Learning Classification from a Signal Separation Perspective
- Authors: Hrushikesh Mhaskar, Ryan O'Dowd, Efstratios Tsoukanis,
- Abstract summary: We propose a novel clustering and classification framework inspired by the principles of signal separation.<n>We validate our method on real-world hyperspectral datasets Salinas and Indian Pines.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In machine learning, classification is usually seen as a function approximation problem, where the goal is to learn a function that maps input features to class labels. In this paper, we propose a novel clustering and classification framework inspired by the principles of signal separation. This approach enables efficient identification of class supports, even in the presence of overlapping distributions. We validate our method on real-world hyperspectral datasets Salinas and Indian Pines. The experimental results demonstrate that our method is competitive with the state of the art active learning algorithms by using a very small subset of data set as training points.
Related papers
- Graph-Based Semi-Supervised Segregated Lipschitz Learning [0.21847754147782888]
This paper presents an approach to semi-supervised learning for the classification of data using the Lipschitz Learning on graphs.
We develop a graph-based semi-supervised learning framework that leverages the properties of the infinity Laplacian to propagate labels in a dataset where only a few samples are labeled.
arXiv Detail & Related papers (2024-11-05T17:16:56Z) - Fine-Grained Visual Classification using Self Assessment Classifier [12.596520707449027]
Extracting discriminative features plays a crucial role in the fine-grained visual classification task.
In this paper, we introduce a Self Assessment, which simultaneously leverages the representation of the image and top-k prediction classes.
We show that our method achieves new state-of-the-art results on CUB200-2011, Stanford Dog, and FGVC Aircraft datasets.
arXiv Detail & Related papers (2022-05-21T07:41:27Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - Self-Training: A Survey [5.772546394254112]
Semi-supervised algorithms aim to learn prediction functions from a small set of labeled observations and a large set of unlabeled observations.<n>Among the existing techniques, self-training methods have undoubtedly attracted greater attention in recent years.<n>We present self-training methods for binary and multi-class classification; as well as their variants and two related approaches.
arXiv Detail & Related papers (2022-02-24T11:40:44Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
We develop an algorithm that provides per-class explainability.
In an extensive battery of experiments, we demonstrate the ability of our methods to class-specific visualization.
arXiv Detail & Related papers (2020-12-03T18:48:39Z) - SLADE: A Self-Training Framework For Distance Metric Learning [75.54078592084217]
We present a self-training framework, SLADE, to improve retrieval performance by leveraging additional unlabeled data.
We first train a teacher model on the labeled data and use it to generate pseudo labels for the unlabeled data.
We then train a student model on both labels and pseudo labels to generate final feature embeddings.
arXiv Detail & Related papers (2020-11-20T08:26:10Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.