論文の概要: Language learning shapes visual category-selectivity in deep neural networks
- arxiv url: http://arxiv.org/abs/2502.16456v2
- Date: Thu, 09 Oct 2025 11:58:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 15:34:28.383524
- Title: Language learning shapes visual category-selectivity in deep neural networks
- Title(参考訳): 深層ニューラルネットワークにおける言語学習の視覚カテゴリー選択性
- Authors: Zitong Lu, Yuxin Wang,
- Abstract要約: ヒト脳のカテゴリー選択領域(FFA)、外骨格体領域(EBA)、海馬傍位置領域(PPA)、視覚的単語形成領域(VWFA)など)。
人工ニューラルネットワーク(ANN)は,類似のカテゴリー選択ニューロンを示すか,これらの表現が言語経験によってどのように形成されるかを検討する。
- 参考スコア(独自算出の注目度): 4.718391397201809
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Category-selective regions in the human brain-such as the fusiform face area (FFA), extrastriate body area (EBA), parahippocampal place area (PPA), and visual word form area (VWFA)-support high-level visual recognition. Here, we investigate whether artificial neural networks (ANNs) exhibit analogous category-selective neurons and how these representations are shaped by language experience. Using an fMRI-inspired functional localizer approach, we identified face-, body-, place-, and word-selective neurons in deep networks presented with category images and scrambled controls. Both the purely visual ResNet and a linguistically supervised Lang-Learned ResNet contained category-selective neurons that increased in proportion across layers. However, compared to the vision-only model, the Lang-Learned ResNet showed a greater number but lower specificity of category-selective neurons, along with reduced spatial localization and attenuated activation strength-indicating a shift toward more distributed, semantically aligned coding. These effects were replicated in the large-scale vision-language model CLIP. Together, our findings reveal that language experience systematically reorganizes visual category representations in ANNs, providing a computational parallel to how linguistic context may shape categorical organization in the human brain.
- Abstract(参考訳): ヒト脳のカテゴリー選択領域(FFA)、外骨格体領域(EBA)、海馬傍位置領域(PPA)、視覚的単語形成領域(VWFA)など)。
本稿では,ANN(Artificial Neural Network)が類似のカテゴリ選択性ニューロンを示すか否か,およびこれらの表現が言語経験によってどのように形成されるかを検討する。
fMRIによる機能的ローカライザアプローチを用いて,カテゴリ画像とスクランブル制御を備えたディープネットワークにおいて,顔,体,場所,単語選択性ニューロンを同定した。
純粋に視覚的なResNetと言語的に制御されたLang-Learned ResNetの両方には、層間で比例するカテゴリ選択性ニューロンが含まれていた。
しかし、視覚のみのモデルと比較すると、Lang-Learned ResNetは、空間的局所化の低減とアクティベーション強度の低下とともに、より分散的、セマンティックに整合した符号化へのシフトを示すとともに、カテゴリ選択ニューロンのより多数の特異性を示した。
これらの効果は大規模視覚言語モデルCLIPで再現された。
その結果,言語経験はANNの視覚的カテゴリー表現を体系的に再構成し,言語コンテキストが人間の脳内の分類的組織をどう形成するかを計算的に表すことができた。
関連論文リスト
- Sharing Matters: Analysing Neurons Across Languages and Tasks in LLMs [70.3132264719438]
我々は,タスクや言語間でニューロンの活性化がどのように共有されるかを調べることで,研究ギャップを埋めることを目指している。
我々は、異なる言語にまたがる特定の入力に対する応答に基づいて、ニューロンを4つの異なるカテゴリに分類する。
分析の結果, (i) ニューロン共有のパターンはタスクや例の特徴に大きく影響され, (ii) ニューロン共有は言語類似性に完全には対応しない, (iii) 共有ニューロンは応答の生成において重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-13T16:04:11Z) - Finding Shared Decodable Concepts and their Negations in the Brain [4.111712524255376]
我々は、自然視画像観察中に脳の反応をCLIP埋め込みにマッピングする非常に正確なコントラストモデルを訓練する。
次に、DBSCANクラスタリングアルゴリズムの新たな適応を用いて、参加者固有のコントラストモデルパラメータをクラスタリングする。
各SDCクラスタに最も多く,最も関連付けられていない画像を調べることで,各SDCのセマンティック特性についてさらなる知見が得られる。
論文 参考訳(メタデータ) (2024-05-27T21:28:26Z) - Parallel Backpropagation for Shared-Feature Visualization [36.31730251757713]
最近の研究は、いくつかのカテゴリー外刺激が高レベルの視覚脳領域のニューロンを活性化することを示した。
これは、他の画像にもある好みのクラスに共通する視覚的特徴のためかもしれない。
本稿では,これらの特徴を可視化するためのディープラーニングに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-16T05:56:03Z) - SPIN: Sparsifying and Integrating Internal Neurons in Large Language Models for Text Classification [6.227343685358882]
本稿では,テキスト分類のための大規模言語モデルの中間層の内部ニューロンを分散・統合するモデルに依存しないフレームワークを提案する。
SPINはテキスト分類の精度、効率、解釈可能性を大幅に改善する。
論文 参考訳(メタデータ) (2023-11-27T16:28:20Z) - Deep Spiking Neural Networks with High Representation Similarity Model
Visual Pathways of Macaque and Mouse [17.545204435882816]
スパイクニューラルネットワーク(SNN)は、スパイクニューロンがスパイクの時系列で情報をエンコードしているため、生物学的に妥当なモデルである。
本研究では,視覚野を深部SNNで初めてモデル化し,また最先端の深部CNNとViTで比較した。
SNNのほぼ全ての類似度スコアは、平均6.6%のCNNよりも高い。
論文 参考訳(メタデータ) (2023-03-09T13:07:30Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
深部畳み込み神経ネットワーク(CNN)は、脳の機能的類似、視覚野の腹側流の優れたモデルを提供することが示されている。
ここでは、CNNまたは視覚野の内部表現で知られているいくつかの顕著な統計的パターンについて考察する。
我々は、CNNと視覚野が、オブジェクト表現の次元展開/縮小と画像情報の再構成と、同様の密接な関係を持っていることを示す。
論文 参考訳(メタデータ) (2022-05-27T08:06:40Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Natural Language Descriptions of Deep Visual Features [50.270035018478666]
オープンエンド,コンポジション,自然言語による記述で自動的にニューロンをラベル付けする手法を提案する。
我々はMILANを用いて、視覚モデルにおける属性、カテゴリ、関係情報を選択的に選択したニューロンの分布と重要性を特徴付ける。
また、これらの特徴を曖昧にすることを目的としたデータセットでトレーニングされたモデルにおいて、人種や性別といった保護されたカテゴリに敏感な、監査用のMILANも使用しています。
論文 参考訳(メタデータ) (2022-01-26T18:48:02Z) - Modeling Category-Selective Cortical Regions with Topographic
Variational Autoencoders [72.15087604017441]
カテゴリー選択性(英: Category-Selectivity)は、大脳皮質の特定の空間的局所化領域が特定の限られたカテゴリーからの刺激に対して頑健かつ選択的に反応する傾向にあるという観察を記述している。
新たに導入されたTopographic Variational Autoencoderを利用して、そのような局所化カテゴリ選択性の出現を教師なしでモデル化する。
本研究では,ヒト腹側頭皮質の観察に類似した,より抽象的なカテゴリのネストされた空間的階層が得られたことを示す予備的な結果を示す。
論文 参考訳(メタデータ) (2021-10-25T11:37:41Z) - The Selectivity and Competition of the Mind's Eye in Visual Perception [8.411385346896411]
階層的競争の形で横方向と上下方向のフィードバックを組み込んだ,新しい計算モデルを構築した。
これらの要素が脳内の高レベル領域の情報フローと選択性を説明するのに役立つだけでなく、これらの神経機構が新しい分類枠組みの基礎となることも示している。
論文 参考訳(メタデータ) (2020-11-23T01:55:46Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。