論文の概要: The Selectivity and Competition of the Mind's Eye in Visual Perception
- arxiv url: http://arxiv.org/abs/2011.11167v2
- Date: Tue, 23 Mar 2021 15:43:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 02:10:48.409261
- Title: The Selectivity and Competition of the Mind's Eye in Visual Perception
- Title(参考訳): 視覚知覚における心の眼の選択性と競合
- Authors: Edward Kim, Maryam Daniali, Jocelyn Rego, Garrett T. Kenyon
- Abstract要約: 階層的競争の形で横方向と上下方向のフィードバックを組み込んだ,新しい計算モデルを構築した。
これらの要素が脳内の高レベル領域の情報フローと選択性を説明するのに役立つだけでなく、これらの神経機構が新しい分類枠組みの基礎となることも示している。
- 参考スコア(独自算出の注目度): 8.411385346896411
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research has shown that neurons within the brain are selective to certain
stimuli. For example, the fusiform face area (FFA) region is known by
neuroscientists to selectively activate when people see faces over non-face
objects. However, the mechanisms by which the primary visual system directs
information to the correct higher levels of the brain are currently unknown. In
our work, we mimic several high-level neural mechanisms of perception by
creating a novel computational model that incorporates lateral and top down
feedback in the form of hierarchical competition. Not only do we show that
these elements can help explain the information flow and selectivity of high
level areas within the brain, we also demonstrate that these neural mechanisms
provide the foundation of a novel classification framework that rivals
traditional supervised learning in computer vision. Additionally, we present
both quantitative and qualitative results that demonstrate that our generative
framework is consistent with neurological themes and enables simple, yet robust
category level classification.
- Abstract(参考訳): 研究によると、脳内のニューロンは特定の刺激に対して選択的である。
例えば、ファシフォーム・フェイス・エリア(FFA)は神経科学者によって、顔以外の物体で顔を見たときに選択的に活性化することが知られている。
しかし、一次視覚系が正しい脳の上位レベルに情報を誘導するメカニズムは現在不明である。
本研究では,階層的競争の形で横およびトップダウンのフィードバックを組み込んだ新しい計算モデルを構築し,複数の高レベルな知覚神経機構を模倣した。
これらの要素が脳内の高レベル領域の情報フローと選択性を説明するのに役立つだけでなく、これらの神経機構がコンピュータビジョンにおける従来の教師あり学習に匹敵する新しい分類枠組みの基礎となることも示している。
さらに, 定量的・定性的な結果から, 生成枠組みが神経学的テーマと一致し, 単純かつロバストな分類が可能となることを示す。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Brain Mapping with Dense Features: Grounding Cortical Semantic Selectivity in Natural Images With Vision Transformers [5.265058307999745]
本稿では,脳内視覚概念を分離するBrainSAILを紹介する。
BrainSAILは、事前訓練された視覚モデルから意味的に一貫性があり、密集した空間的特徴を利用する。
カテゴリー選択性のある大脳皮質領域におけるBrainSAILの評価を行った。
論文 参考訳(メタデータ) (2024-10-07T17:59:45Z) - BRACTIVE: A Brain Activation Approach to Human Visual Brain Learning [11.517021103782229]
本稿では,脳活動ネットワーク(BRACTIVE)について紹介する。
BRACTIVEの主な目的は、被験者の視覚的特徴をfMRI信号を介して対応する脳表現と整合させることである。
実験の結果, BRACTIVEは顔や身体選択領域など, 個人特有の関心領域を効果的に識別できることがわかった。
論文 参考訳(メタデータ) (2024-05-29T06:50:13Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
機能的脳活動から直接人間の視覚的注意を特徴付ける脳誘発対人視覚注意ネットワーク(BI-AVAN)を提案する。
本モデルは,人間の脳が監督されていない方法で焦点を絞った映画フレーム内の視覚的物体を識別・発見するために,注意関連・無視対象間の偏りのある競合過程を模倣する。
論文 参考訳(メタデータ) (2022-10-27T22:20:36Z) - Brain-inspired algorithms for processing of visual data [5.045960549713147]
視覚野のニューロンの機能に関する神経科学的知見に基づく画像処理とコンピュータビジョンのアプローチを概観する。
入力刺激の変化に対する安定性が向上した視覚系を提供するため,一部のニューロンの応答抑制機構に特に注目する。
論文 参考訳(メタデータ) (2021-03-02T10:45:38Z) - Visual Explanation for Identification of the Brain Bases for Dyslexia on
fMRI Data [13.701992590330395]
ネットワーク可視化技術を用いて、高レベルの特徴を学習するために必要な畳み込みニューラルネットワーク層において、分類された条件に対する専門家が支援する洞察に意味のあるイメージを提供することができることを示す。
以上の結果から,脳画像のみによる発達障害の正確な分類だけでなく,同時代の神経科学的知識と一致する特徴の自動可視化も可能となった。
論文 参考訳(メタデータ) (2020-07-17T22:11:30Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。