A Split-Window Transformer for Multi-Model Sequence Spammer Detection using Multi-Model Variational Autoencoder
- URL: http://arxiv.org/abs/2502.16483v1
- Date: Sun, 23 Feb 2025 07:53:08 GMT
- Title: A Split-Window Transformer for Multi-Model Sequence Spammer Detection using Multi-Model Variational Autoencoder
- Authors: Zhou Yang, Yucai Pang, Hongbo Yin, Yunpeng Xiao,
- Abstract summary: This paper introduces a new Transformer, called MS$2$Dformer, that can be used as a generalized backbone for spammer detection.<n>Design a user behavior Tokenization algorithm based on the multi-modal variational autoencoder (MVAE)<n>Pre-trained on the public datasets, MS$2$Dformer's performance far exceeds the previous state of the art.
- Score: 4.738887010407782
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a new Transformer, called MS$^2$Dformer, that can be used as a generalized backbone for multi-modal sequence spammer detection. Spammer detection is a complex multi-modal task, thus the challenges of applying Transformer are two-fold. Firstly, complex multi-modal noisy information about users can interfere with feature mining. Secondly, the long sequence of users' historical behaviors also puts a huge GPU memory pressure on the attention computation. To solve these problems, we first design a user behavior Tokenization algorithm based on the multi-modal variational autoencoder (MVAE). Subsequently, a hierarchical split-window multi-head attention (SW/W-MHA) mechanism is proposed. The split-window strategy transforms the ultra-long sequences hierarchically into a combination of intra-window short-term and inter-window overall attention. Pre-trained on the public datasets, MS$^2$Dformer's performance far exceeds the previous state of the art. The experiments demonstrate MS$^2$Dformer's ability to act as a backbone.
Related papers
- PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - Masked Graph Learning with Recurrent Alignment for Multimodal Emotion Recognition in Conversation [12.455034591553506]
Multimodal Emotion Recognition in Conversation (MERC) can be applied to public opinion monitoring, intelligent dialogue robots, and other fields.
Previous work ignored the inter-modal alignment process and the intra-modal noise information before multimodal fusion.
We have developed a novel approach called Masked Graph Learning with Recursive Alignment (MGLRA) to tackle this problem.
arXiv Detail & Related papers (2024-07-23T02:23:51Z) - Hyper-Transformer for Amodal Completion [82.4118011026855]
Amodal object completion is a complex task that involves predicting the invisible parts of an object based on visible segments and background information.
We introduce a novel framework named the Hyper-Transformer Amodal Network (H-TAN)
This framework utilizes a hyper transformer equipped with a dynamic convolution head to directly learn shape priors and accurately predict amodal masks.
arXiv Detail & Related papers (2024-05-30T11:11:54Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - Multimodal Transformer With a Low-Computational-Cost Guarantee [14.852842445363505]
Low-Cost Multimodal Transformer (LoCoMT) is a novel multimodal attention mechanism that aims to reduce computational cost during training and inference with minimal performance loss.
LoCoMT can flexibly control multimodal signals and theoretically ensures a reduced computational cost compared to existing multimodal Transformer variants.
arXiv Detail & Related papers (2024-02-23T05:09:35Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
We propose a novel multi-modal visual prompt tracking model based on a universal bi-directional adapter.
We develop a simple but effective light feature adapter to transfer modality-specific information from one modality to another.
Our model achieves superior tracking performance in comparison with both the full fine-tuning methods and the prompt learning-based methods.
arXiv Detail & Related papers (2023-12-17T05:27:31Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - MS-DETR: Multispectral Pedestrian Detection Transformer with Loosely Coupled Fusion and Modality-Balanced Optimization [43.04788370184486]
misalignment and modality imbalance are the most significant issues in multispectral pedestrian detection.
MS-DETR consists of two modality-specific backbones and Transformer encoders, followed by a multi-modal Transformer decoder.
Our end-to-end MS-DETR shows superior performance on the challenging KAIST, CVC-14 and LLVIP benchmark datasets.
arXiv Detail & Related papers (2023-02-01T07:45:10Z) - Cluster-Former: Clustering-based Sparse Transformer for Long-Range
Dependency Encoding [90.77031668988661]
Cluster-Former is a novel clustering-based sparse Transformer to perform attention across chunked sequences.
The proposed framework is pivoted on two unique types of Transformer layer: Sliding-Window Layer and Cluster-Former Layer.
Experiments show that Cluster-Former achieves state-of-the-art performance on several major QA benchmarks.
arXiv Detail & Related papers (2020-09-13T22:09:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.