論文の概要: Gaussian Process Regression for Improved Underwater Navigation
- arxiv url: http://arxiv.org/abs/2502.16510v1
- Date: Sun, 23 Feb 2025 09:13:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:51:55.143570
- Title: Gaussian Process Regression for Improved Underwater Navigation
- Title(参考訳): 水中航法改善のためのガウス過程の回帰
- Authors: Nadav Cohen, Itzik Klein,
- Abstract要約: ドップラー速度ログ(DVL)は通常、速度測定によってこのドリフトを緩和するために使用される。
本稿では、DVL速度推定を改善するために、多出力ガウス過程回帰(MOGPR)に基づくデータ駆動方式を提案する。
提案手法を実世界のAUVデータを用いて評価し,LSと最先端のディープラーニングモデルであるBeamsNetと比較した。
- 参考スコア(独自算出の注目度): 13.221163846643607
- License:
- Abstract: Accurate underwater navigation is a challenging task due to the absence of global navigation satellite system signals and the reliance on inertial navigation systems that suffer from drift over time. Doppler velocity logs (DVLs) are typically used to mitigate this drift through velocity measurements, which are commonly estimated using a parameter estimation approach such as least squares (LS). However, LS works under the assumption of ideal conditions and does not account for sensor biases, leading to suboptimal performance. This paper proposes a data-driven alternative based on multi-output Gaussian process regression (MOGPR) to improve DVL velocity estimation. MOGPR provides velocity estimates and associated measurement covariances, enabling an adaptive integration within an error-state Extended Kalman Filter (EKF). We evaluate our proposed approach using real-world AUV data and compare it against LS and a state-of-the-art deep learning model, BeamsNet. Results demonstrate that MOGPR reduces velocity estimation errors by approximately 20% while simultaneously enhancing overall navigation accuracy, particularly in the orientation states. Additionally, the incorporation of uncertainty estimates from MOGPR enables an adaptive EKF framework, improving navigation robustness in dynamic underwater environments.
- Abstract(参考訳): 正確な水中航法は、地球規模の航法衛星システム信号の欠如と、時間とともに漂流する慣性航法システムに依存するため、困難な課題である。
ドップラー速度ログ(DVL)は、通常、最小二乗(LS)のようなパラメータ推定手法を用いて推定される速度測定によってこのドリフトを緩和するために使用される。
しかし、LSは理想的な条件の仮定の下で機能し、センサバイアスを考慮せず、最適以下の性能をもたらす。
本稿では、DVL速度推定を改善するために、多出力ガウス過程回帰(MOGPR)に基づくデータ駆動方式を提案する。
MOGPRは速度推定と関連する測定共分散を提供し、エラー状態拡張カルマンフィルタ(EKF)内で適応的な積分を可能にする。
提案手法を実世界のAUVデータを用いて評価し,LSと最先端のディープラーニングモデルであるBeamsNetと比較した。
以上の結果から,MOGPRは航法精度,特に配向状態において,全航法精度を同時に向上しながら,速度推定誤差を約20%低減することを示した。
さらに、MOGPRからの不確実性推定の組み入れにより、適応型EKFフレームワークが実現され、動的水中環境におけるナビゲーションの堅牢性が改善される。
関連論文リスト
- MPVO: Motion-Prior based Visual Odometry for PointGoal Navigation [3.9974562667271507]
視覚計測(VO)は,室内環境におけるエンボディエージェントの正確なポイントゴールナビゲーションを可能にするために不可欠である。
近年の深層学習VO法は, 頑健な性能を示すが, トレーニング中のサンプル不効率に悩まされている。
エージェントが環境をナビゲートしている間に利用可能な動作先に基づいて、ロバストでサンプル効率の良いVOパイプラインを提案する。
論文 参考訳(メタデータ) (2024-11-07T15:36:49Z) - Understanding Optimization in Deep Learning with Central Flows [53.66160508990508]
RMSの暗黙的な振る舞いは、微分方程式の「中央流:」によって明示的に捉えられることを示す。
これらのフローは、汎用ニューラルネットワークの長期最適化軌道を経験的に予測できることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:58:13Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
様々な動物が環境の手がかりを使って正確なナビゲーションをしている。
動物航法にインスパイアされたこの研究は、長距離水中航法のためのバイオニックでデータ駆動のアプローチを提案する。
提案手法では,GPSシステムや地理地図を必要とせず,測地データを用いてナビゲーションを行う。
論文 参考訳(メタデータ) (2024-02-06T13:20:56Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
本稿では、ポイントツーポイントナビゲーションタスクにおける飛行偏差に対処する新しい角度ナビゲーションパラダイムを提案する。
また、Adaptive Feature Enhance Module、Cross-knowledge Attention-guided Module、Robust Task-oriented Head Moduleを含むモデルを提案する。
論文 参考訳(メタデータ) (2024-02-04T08:41:20Z) - Data-Driven Strategies for Coping with Incomplete DVL Measurements [15.619053656143564]
現実のシナリオでは、不完全なドップラー速度測定が行われ、位置決めエラーやミッション中止が発生する。
本稿では,LiBeamsNetとMissBeamNetの2つの最先端ディープラーニング手法の比較分析を行った。
両ディープラーニングアーキテクチャは,速度予測精度が16%以上向上した。
論文 参考訳(メタデータ) (2024-01-28T10:17:36Z) - Set-Transformer BeamsNet for AUV Velocity Forecasting in Complete DVL
Outage Scenarios [10.64241024049424]
本研究では,DVLが完全に停止した場合の現在のAUV速度を抑えるために,Set-Transformer-based BeamsNetを提案する。
本手法は,スナップルAUVを用いて地中海で実施した実験データを用いて評価した。
論文 参考訳(メタデータ) (2022-12-22T13:10:44Z) - Globally Optimal Event-Based Divergence Estimation for Ventral Landing [55.29096494880328]
イベントセンシングはバイオインスパイアされた飛行誘導と制御システムの主要なコンポーネントである。
本研究では, イベントカメラを用いた腹側着陸時の表面との接触時間予測について検討する。
これは、着陸時に発生する事象の流れから放射光の流れの速度である発散(逆TTC)を推定することで達成される。
我々のコアコントリビューションは、イベントベースの発散推定のための新しいコントラスト最大化定式化と、コントラストを正確に最大化し、最適な発散値を求めるブランチ・アンド・バウンドアルゴリズムである。
論文 参考訳(メタデータ) (2022-09-27T06:00:52Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - BeamsNet: A data-driven Approach Enhancing Doppler Velocity Log
Measurements for Autonomous Underwater Vehicle Navigation [12.572597882082054]
本稿では,推定DVL速度ベクトルを回帰するエンドツーエンドのディープラーニングフレームワークであるBeamsNetを提案する。
その結果,提案手法はDVL速度ベクトルの推定において60%以上の改善を達成できた。
論文 参考訳(メタデータ) (2022-06-27T19:38:38Z) - Variational encoder geostatistical analysis (VEGAS) with an application
to large scale riverine bathymetry [1.2093180801186911]
水位測定としても知られる河床形状の推定は,多くの応用において重要な役割を担っている。
本稿では,中央に狭い層を持つディープニューラルネットワークである可変オートエンコーダ(VAE)を利用するリダクション・オーダー・モデル(ROM)に基づくアプローチを提案する。
アメリカ合衆国,サバンナ川の1マイル到達地点において,我々の逆解析手法を検証した。
論文 参考訳(メタデータ) (2021-11-23T08:27:48Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。