論文の概要: The Hidden Strength of Disagreement: Unraveling the Consensus-Diversity Tradeoff in Adaptive Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2502.16565v1
- Date: Sun, 23 Feb 2025 13:12:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:59:44.445913
- Title: The Hidden Strength of Disagreement: Unraveling the Consensus-Diversity Tradeoff in Adaptive Multi-Agent Systems
- Title(参考訳): 診断の隠れ強度:適応型マルチエージェントシステムにおける合意・多様性トレードオフの解明
- Authors: Zengqing Wu, Takayuki Ito,
- Abstract要約: エージェントが独立して情報交換を行う暗黙のコンセンサスは、動的環境においてより効果的である、と我々は主張する。
我々は、暗黙の手法が明示的な手法よりも優れている条件を示す、コンセンサスと多様性のトレードオフを定式化する。
我々は、回復力のある意思決定のために多様性を維持することの価値を強調し、文脈内学習による創発的な調整を強調した。
- 参考スコア(独自算出の注目度): 1.137572571250676
- License:
- Abstract: Consensus formation is pivotal in multi-agent systems (MAS), balancing collective coherence with individual diversity. Conventional LLM-based MAS primarily rely on explicit coordination, e.g., prompts or voting, risking premature homogenization. We argue that implicit consensus, where agents exchange information yet independently form decisions via in-context learning, can be more effective in dynamic environments that require long-horizon adaptability. By retaining partial diversity, systems can better explore novel strategies and cope with external shocks. We formalize a consensus-diversity tradeoff, showing conditions where implicit methods outperform explicit ones. Experiments on three scenarios -- Dynamic Disaster Response, Information Spread and Manipulation, and Dynamic Public-Goods Provision -- confirm partial deviation from group norms boosts exploration, robustness, and performance. We highlight emergent coordination via in-context learning, underscoring the value of preserving diversity for resilient decision-making.
- Abstract(参考訳): コンセンサス形成はマルチエージェントシステム(MAS)において重要であり、集合コヒーレンスと個人の多様性のバランスをとる。
従来のLLMベースのMASは主に明示的な調整(例えば、プロンプトや投票)に依存しており、早期同化のリスクがある。
エージェントが独立して情報交換を行い、文脈内学習によって決定を下すという暗黙のコンセンサスは、長期的適応性を必要とする動的環境においてより効果的である、と我々は主張する。
部分的な多様性を維持することで、システムは新しい戦略を探求し、外部の衝撃に対処することができる。
我々は、暗黙の手法が明示的な手法よりも優れている条件を示す、コンセンサスと多様性のトレードオフを定式化する。
3つのシナリオ(動的災害対応、情報スプレッドと操作、動的公共目標規定)の実験では、グループノルムからの偏差が探索、堅牢性、パフォーマンスを高めることが確認されている。
我々は、回復力のある意思決定のために多様性を維持することの価値を強調し、文脈内学習による創発的な調整を強調した。
関連論文リスト
- Agentic LLM Framework for Adaptive Decision Discourse [2.4919169815423743]
本研究では,実世界のエージェント型大規模言語モデル(LLM)フレームワークを紹介する。
従来の意思決定支援ツールとは異なり、このフレームワークは対話、トレードオフ探索、エージェント間の相互作用によって生成される創発的なシナジーを強調している。
その結果、第1次探索がいかに堅牢で公平なレコメンデーションパスを育むかが明らかとなった。
論文 参考訳(メタデータ) (2025-02-16T03:46:37Z) - Do as We Do, Not as You Think: the Conformity of Large Language Models [46.23852835759767]
本稿では,大規模言語モデル(LLM)による協調型AIシステムにおける適合性について述べる。
適合性の存在、適合性に影響を与える要因、潜在的な緩和戦略の3つの側面に焦点を当てる。
本分析では, 相互作用時間や過半数サイズなど, 適合性に影響を与える要因を解明し, 対象エージェントが適合行動をどのように合理化するかを検討する。
論文 参考訳(メタデータ) (2025-01-23T04:50:03Z) - Asymmetric Reinforcing against Multi-modal Representation Bias [59.685072206359855]
マルチモーダル表現バイアス(ARM)に対する非対称強化法を提案する。
我々のARMは、条件付き相互情報を通じて支配的なモダリティを表現する能力を維持しながら、弱いモダリティを動的に強化する。
我々はマルチモーダル学習の性能を著しく改善し、不均衡なマルチモーダル学習の軽減に顕著な進展をもたらした。
論文 参考訳(メタデータ) (2025-01-02T13:00:06Z) - Controlling Behavioral Diversity in Multi-Agent Reinforcement Learning [8.905920197601173]
本研究では,ある指標の正確な値に対する多様性を制御できるダイバーシティ制御(DiCo)を導入する。
マルチエージェント強化学習における性能向上とサンプル効率向上のための新しいパラダイムとしてDiCoを用いる方法を示す。
論文 参考訳(メタデータ) (2024-05-23T21:03:33Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - System Neural Diversity: Measuring Behavioral Heterogeneity in Multi-Agent Learning [8.280943341629161]
マルチエージェントシステムにおける振る舞いの不均一性の尺度であるシステムニューラルダイバーシティ(SND)を紹介する。
SNDはエージェントが取得した潜時レジリエンスのスキルを計測できるが、タスクパフォーマンス(リワード)などの他のプロキシは失敗する。
我々は、このパラダイムが探索フェーズのブートストラップにどのように使用できるかを示し、最適なポリシーを高速に見つける。
論文 参考訳(メタデータ) (2023-05-03T13:58:13Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
ソースデータがない場合、異なるドメイン間の知識伝達に対処するために、ソースフリードメイン適応(SFDA)が導入された。
教師なしのFDAでは、多様性はソース上の1つの仮説を学習するか、共有された特徴抽出器で複数の仮説を学習することに限定される。
本稿では,異なる特徴抽出器を用いて表現多様性を促進する新しい無教師付きSFDAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-06T00:20:19Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Heterogeneous Target Speech Separation [52.05046029743995]
我々は,非相互排他的概念を用いて興味のあるソースを区別できる単一チャネルターゲットソース分離のための新しいパラダイムを提案する。
提案する異種分離フレームワークは,分散シフトが大きいデータセットをシームレスに利用することができる。
論文 参考訳(メタデータ) (2022-04-07T17:14:20Z) - Discovering Diverse Nearly Optimal Policies withSuccessor Features [30.144946007098852]
強化学習では、多様なポリシーの集合が探索、移動、階層化、堅牢性に有用である。
本稿では,継承的特徴の空間において多種多様であるポリシーを発見する方法として,多元的継承政策を提案する。
論文 参考訳(メタデータ) (2021-06-01T17:56:13Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
エンパワーメント原理は 直立位置での 力学系の教師なし安定化を可能にする
本稿では,ガウスチャネルとして動的システムのトレーニング可能な表現に基づく代替解を提案する。
提案手法は, サンプルの複雑さが低く, 訓練時より安定であり, エンパワーメント機能の本質的特性を有し, 画像からエンパワーメントを推定できることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:10:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。