Image Current Detection of Electrons in a Room-Temperature Paul Trap
- URL: http://arxiv.org/abs/2502.16578v2
- Date: Mon, 14 Apr 2025 01:03:15 GMT
- Title: Image Current Detection of Electrons in a Room-Temperature Paul Trap
- Authors: Kento Taniguchi, Atsushi Noguchi,
- Abstract summary: We report the image current detection of electrons in a room-temperature Paul trap at microwave frequencies.<n> Implementing this experiment at cryogenic temperatures could enable the image current detection and ground-state cooling of a single electron in Paul traps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report the image current detection of electrons in a room-temperature Paul trap at microwave frequencies. By selectively leveraging distinct cavity modes for trapping and detection, our approach effectively extracts electron signals otherwise buried in the microwave drive used for pseudo-potential formation. When the trapped electrons resonate with the cavity mode, we observe a mode excitation and its exponential decay attributed to resistive cooling. Detuning electrons from the cavity resonance halts this decay, and sweeping electrons' secular frequency reveals their oscillatory spectrum. Implementing this experiment at cryogenic temperatures could enable the image current detection and ground-state cooling of a single electron in Paul traps.
Related papers
- Numerical Investigations of Electron Dynamics in a Linear Paul Trap [8.532265107618779]
We consider electrons confined in Paul traps, with their spin states as qubits.
For this approach, if the two electrons are trapped in the same potential well, they must form Wigner crystals.
We numerically verified the cooling methods required to reach the crystallization thresholds.
arXiv Detail & Related papers (2025-03-16T06:58:42Z) - Exploring single-photon recoil on free electrons [36.136619420474766]
We present experimental investigations of energy-momentum conservation and the corresponding dispersion relation on the single particle level, achieved through coincidence detection of electron-photon pairs.
This not only enables unprecedented clarity in detecting weak signals otherwise obscured by non-radiative processes but also provides a new experimental pathway to explore entanglement within electron-photon pairs.
arXiv Detail & Related papers (2024-09-18T16:45:17Z) - Time-resolved sensing of electromagnetic fields with single-electron interferometry [1.142584243576642]
We demonstrate a quantum sensor that exploits the phase of a single electron wavefunction, measured in an electronic Fabry-Perot interferometer.
This capability paves the way for on-chip detection of quantum radiation, such as squeezed or Fock states.
arXiv Detail & Related papers (2024-08-23T08:10:34Z) - Quantum sensing of time dependent electromagnetic fields with single electron excitations [0.0]
We show that single electron interferometers have the potential to probe quantum radiation in the time domain with sub-nanosecond to picosecond time resolution.
Our research could have significant implications for probing the fundamental properties of light in the microwave to tera-Hertz domains at extremely short time scales.
arXiv Detail & Related papers (2024-05-09T14:28:51Z) - Raman-phonon-polariton condensation in a transversely pumped cavity [44.99833362998488]
We suggest a new approach to realising phonon polaritons, by employing a transverse-pumping Raman scheme.
We show that such a system may realise a phonon-polariton condensate.
arXiv Detail & Related papers (2024-05-08T17:59:31Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Image-charge detection of the Rydberg transition of electrons on
superfluid helium confined in a microchannel structure [0.45687771576879593]
We report on the image-charge detection of the Rydberg transition in a many-electron system confined in an array of 20-um wide and 4-um deep channels filled with superfluid helium.
This work demonstrates that microchannel structures provide a suitable platform for electron manipulation and their quantum state detection, with a feasibility of scaling the detection method to a single electron.
arXiv Detail & Related papers (2022-07-08T08:14:07Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Near-monochromatic tuneable cryogenic niobium electron field emitter [48.7576911714538]
We describe electron field emission from a monocrystalline, superconducting niobium nanotip at a temperature of 5.9 K.
The emitted electron energy spectrum reveals an ultra-narrow distribution down to 16 meV.
This source will decrease the impact of lens aberration and enable new modes in low-energy electron microscopy, electron energy loss spectroscopy, and high-resolution vibrational spectroscopy.
arXiv Detail & Related papers (2022-05-11T20:46:21Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Bench-top Cooling of a Microwave Mode using an Optically Pumped Spin
Refrigerator [1.8922128824659967]
We experimentally remove thermal photons from a microwave mode at 1.45 GHz.
The noise temperature of the microwave mode dropped to $50+18_-32$ K.
We identify the system as a narrow-band yet extremely convenient platform for realizing low-noise detectors, quantum memory and quantum-enhanced machines.
arXiv Detail & Related papers (2021-04-01T06:07:37Z) - Trapping electrons in a room-temperature microwave Paul trap [7.6483834331380205]
Cold electrons are introduced into the trap by ionization of atomic calcium via Rydberg states.
A fraction of these electrons remain trapped longer and show no measurable loss for measurement times up to a second.
operating a similar electron Paul trap in a cryogenic environment may provide a platform for all-electric quantum computing with trapped electron spin qubits.
arXiv Detail & Related papers (2020-05-14T01:24:47Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.