論文の概要: Evaluating the Robustness and Accuracy of Text Watermarking Under Real-World Cross-Lingual Manipulations
- arxiv url: http://arxiv.org/abs/2502.16699v2
- Date: Sat, 06 Sep 2025 02:17:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:02.926016
- Title: Evaluating the Robustness and Accuracy of Text Watermarking Under Real-World Cross-Lingual Manipulations
- Title(参考訳): 実世界の言語間相互操作によるテキスト透かしのロバストさと精度の評価
- Authors: Mansour Al Ghanim, Jiaqi Xue, Rochana Prih Hastuti, Mengxin Zheng, Yan Solihin, Qian Lou,
- Abstract要約: 本稿では,言語間設定における代表的透かし手法のベンチマークを行う。
4つの異なる語彙の豊かな言語で4つの透かし法を評価する。
- 参考スコア(独自算出の注目度): 19.33779069062106
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a study to benchmark representative watermarking methods in cross-lingual settings. The current literature mainly focuses on the evaluation of watermarking methods for the English language. However, the literature for evaluating watermarking in cross-lingual settings is scarce. This results in overlooking important adversary scenarios in which a cross-lingual adversary could be in, leading to a gray area of practicality over cross-lingual watermarking. In this paper, we evaluate four watermarking methods in four different and vocabulary rich languages. Our experiments investigate the quality of text under different watermarking procedure and the detectability of watermarks with practical translation attack scenarios. Specifically, we investigate practical scenarios that an adversary with cross-lingual knowledge could take, and evaluate whether current watermarking methods are suitable for such scenarios. Finally, from our findings, we draw key insights about watermarking in cross-lingual settings.
- Abstract(参考訳): 本稿では,言語間設定における代表的透かし手法のベンチマークを行う。
現在の文献は、主に英語の透かし法の評価に焦点を当てている。
しかし、言語横断的な設定で透かしを評価する文献は少ない。
この結果、言語横断の敵対者が参加できる重要な敵シナリオを見落とし、言語横断の透かしよりも実践性の灰色の領域に繋がる。
本稿では,4つの異なる語彙のリッチ言語における4つの透かし手法を評価する。
本研究では,異なる透かし手法によるテキストの品質と実際の翻訳攻撃シナリオによる透かしの検出性について検討した。
具体的には,言語間知識を持つ敵が取るべき実践シナリオについて検討し,現在の透かし手法がこのようなシナリオに適しているかどうかを評価する。
最後に、我々の研究結果から、言語間設定における透かしに関する重要な洞察を導き出す。
関連論文リスト
- On Evaluating The Performance of Watermarked Machine-Generated Texts Under Adversarial Attacks [20.972194348901958]
まず、メインストリームのウォーターマーキングスキームと、機械生成テキストに対する削除攻撃を組み合わせます。
8つの透かし(5つのプレテキスト、3つのポストテキスト)と12のアタック(2つのプレテキスト、10のポストテキスト)を87のシナリオで評価した。
その結果、KGWとExponentialの透かしは高いテキスト品質と透かしの保持を提供するが、ほとんどの攻撃に対して脆弱であることが示唆された。
論文 参考訳(メタデータ) (2024-07-05T18:09:06Z) - From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models [6.2153353110363305]
本稿では,透かし技術設計の背景にある様々な視点を統一的に概観する。
我々は異なる透かし技術の背後にある特定の意図に基づいて研究を分析する。
テキスト作成者保護の研究を促進するために,テキスト透かしにおけるギャップとオープンな課題を強調した。
論文 参考訳(メタデータ) (2024-06-17T00:09:31Z) - Duwak: Dual Watermarks in Large Language Models [49.00264962860555]
トークン確率分布とサンプリングスキームの両方に二重秘密パターンを埋め込むことにより、透かしの効率と品質を向上させるために、Duwakを提案する。
Llama2でDuwakを4つの最先端透かし技術と組み合わせて評価した。
論文 参考訳(メタデータ) (2024-03-12T16:25:38Z) - Can Watermarks Survive Translation? On the Cross-lingual Consistency of Text Watermark for Large Language Models [48.409979469683975]
テキスト透かしにおける言語間整合性の概念を紹介する。
予備的な実証実験の結果、現在のテキスト透かし技術は、テキストが様々な言語に翻訳されるときに一貫性が欠如していることが判明した。
透かしを回避するための言語横断型透かし除去攻撃(CWRA)を提案する。
論文 参考訳(メタデータ) (2024-02-21T18:48:38Z) - Cross-Attention Watermarking of Large Language Models [8.704964543257246]
言語モデルの言語透かしに対する新しいアプローチを示す。
情報は、読みやすさと本来の意味を保ちながら、出力テキストに不可避的に挿入される。
クロスアテンションメカニズムは、推論中にテキストに透かしを埋め込むのに使われる。
論文 参考訳(メタデータ) (2024-01-12T09:39:50Z) - A Survey of Text Watermarking in the Era of Large Language Models [91.36874607025909]
テキスト透かしアルゴリズムは、テキストコンテンツの著作権を保護するために不可欠である。
大規模言語モデル(LLM)の最近の進歩は、これらの技術に革命をもたらした。
本稿では,テキスト透かし技術の現状を包括的に調査する。
論文 参考訳(メタデータ) (2023-12-13T06:11:42Z) - I Know You Did Not Write That! A Sampling Based Watermarking Method for
Identifying Machine Generated Text [0.0]
機械生成テキストを検出するための新しい透かし手法を提案する。
我々の方法は生成されたテキストにユニークなパターンを埋め込む。
本稿では,透かしがテキスト品質にどのように影響するかを示し,提案手法を最先端の透かし法と比較する。
論文 参考訳(メタデータ) (2023-11-29T20:04:57Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
本研究では,認知科学レンズを用いた大規模言語モデル(LLM)の異なる機能に対する透かしの効果を評価する。
透かしをシームレスに統合するための相互排他型透かし(WatME)を導入する。
論文 参考訳(メタデータ) (2023-11-16T11:58:31Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
トークンレベルの透かしは、トークン確率分布を変更して生成されたテキストに透かしを挿入する。
この透かしアルゴリズムは、生成中のロジットを変化させ、劣化したテキストの品質につながる可能性がある。
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)。
論文 参考訳(メタデータ) (2023-11-16T08:36:00Z) - Advancing Beyond Identification: Multi-bit Watermark for Large Language Models [31.066140913513035]
機械生成テキストの識別を超えて,大規模言語モデルの誤用に対処する可能性を示す。
言語モデル生成中にトレーサブルなマルチビット情報を埋め込んだ位置アロケーションによるマルチビット透かしを提案する。
論文 参考訳(メタデータ) (2023-08-01T01:27:40Z) - Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy [52.765898203824975]
本研究では,条件付きテキスト生成と入力コンテキストの特性を考慮した意味認識型透かしアルゴリズムを提案する。
実験結果から,提案手法は様々なテキスト生成モデルに対して大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2023-07-25T20:24:22Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
本研究では,人間による書き直し後の透かしテキストの堅牢性,非透かしLDMによる言い換え,あるいはより長い手書き文書への混在性について検討する。
人や機械の言い回しをしても、透かしは検出可能である。
また、大きな文書に埋め込まれた透かし付きテキストの短いスパンに敏感な新しい検出手法についても検討する。
論文 参考訳(メタデータ) (2023-06-07T17:58:48Z) - Cross-Lingual Speaker Identification Using Distant Supervision [84.51121411280134]
本稿では,文脈推論の欠如や言語間一般化の低さといった問題に対処する話者識別フレームワークを提案する。
その結果,2つの英語話者識別ベンチマークにおいて,従来の最先端手法よりも9%の精度,5%の精度で性能が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-11T20:49:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。