論文の概要: Speed and Conversational Large Language Models: Not All Is About Tokens per Second
- arxiv url: http://arxiv.org/abs/2502.16721v1
- Date: Sun, 23 Feb 2025 21:28:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:58:26.655770
- Title: Speed and Conversational Large Language Models: Not All Is About Tokens per Second
- Title(参考訳): スピードと対話型大規模言語モデル - すべてが毎秒のトークンに関するものではない
- Authors: Javier Conde, Miguel González, Pedro Reviriego, Zhen Gao, Shanshan Liu, Fabrizio Lombardi,
- Abstract要約: オープンウェイト大言語モデル(LLM)の速度と,そのタスクへの依存性について検討し,最も普及しているオープンLLMの速度の比較分析を行った。
- 参考スコア(独自算出の注目度): 8.139713450374314
- License:
- Abstract: The speed of open-weights large language models (LLMs) and its dependency on the task at hand, when run on GPUs, is studied to present a comparative analysis of the speed of the most popular open LLMs.
- Abstract(参考訳): オープンウェイトな大言語モデル(LLM)の速度と,そのタスクへの依存性について,GPU上で動作させる場合,最もポピュラーなオープンLLMの速度の比較解析を行った。
関連論文リスト
- Leveraging Open-Source Large Language Models for Native Language Identification [1.6267479602370543]
ネイティブ言語識別(NLI)は、法医学、マーケティング、第二言語習得に応用されている。
本研究では,オープンソース生成型大規模言語モデル(LLM)をNLIに適用する可能性について検討する。
論文 参考訳(メタデータ) (2024-09-15T08:14:18Z) - Towards Fast Multilingual LLM Inference: Speculative Decoding and Specialized Drafters [21.19251212483406]
大規模言語モデル(LLM)は自然言語処理に革命をもたらし、様々な商用アプリケーションに応用範囲を広げている。
本稿では,投機的復号化における補助モデルのトレーニング手法について検討し,将来のトークンを目標LLMで検証する。
言語固有のドラフトモデルは,対象とする事前訓練とファイントゥン戦略によって最適化され,従来の手法に比べて推論時間を大幅に短縮することを示す。
論文 参考訳(メタデータ) (2024-06-24T16:06:50Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Open Conversational LLMs do not know most Spanish words [2.737783055857426]
我々は,オープンソースチャットLLMがスペイン語の単語に対して持つ知識を,参照辞書における単語のサンプルをテストすることによって評価する。
その結果、オープンソースのチャットLLMは、単語の重要部分に対して誤った意味を生じさせ、文脈で文章を書くためにほとんどの単語を正しく利用できないことがわかった。
論文 参考訳(メタデータ) (2024-03-21T15:41:02Z) - The Emergence of Large Language Models in Static Analysis: A First Look
through Micro-Benchmarks [3.848607479075651]
我々は,Pythonプログラムのコールグラフ解析と型推論を改善する上で,現在のLarge Language Models (LLM) が果たす役割について検討する。
本研究により, LLMは型推論において有望な結果を示し, 従来の手法よりも高い精度を示したが, コールグラフ解析では限界が認められた。
論文 参考訳(メタデータ) (2024-02-27T16:53:53Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
本研究は,興味のある言語への埋め込みエントリを制限し,時間と記憶効率を高めることによる語彙トリミング(VT)について検討する。
Unicodeベースのスクリプトフィルタリングとコーパスベースの選択という2つの言語を異なる言語ファミリやサイズに適用する。
その結果、VTは小型モデルのメモリ使用量を50%近く削減し、生成速度が25%向上した。
論文 参考訳(メタデータ) (2023-11-16T09:35:50Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
In-context Autoencoder (ICAE) を提案し、長いコンテキストを短いメモリスロットに圧縮する。
ICAEは、大量のテキストデータに基づく自動符号化と言語モデリングの両方の目的を用いて、まず事前訓練を行う。
論文 参考訳(メタデータ) (2023-07-13T17:59:21Z) - Inference with Reference: Lossless Acceleration of Large Language Models [97.04200102556551]
LLMAは、参照によるLarge Language Model (LLM)推論を高速化するアクセラレータである。
LLMによる復号結果と実世界の多くのシナリオで利用できる参照との間には、多くの同一のテキストが存在していることが観察の動機となっている。
論文 参考訳(メタデータ) (2023-04-10T09:55:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。