Fitting networks with a cancellation trick
- URL: http://arxiv.org/abs/2502.16728v1
- Date: Sun, 23 Feb 2025 21:51:34 GMT
- Title: Fitting networks with a cancellation trick
- Authors: Jiashun Jin, Jingming Wang,
- Abstract summary: We propose the logit-DCBM as a new network model.<n>Similar to the $beta$-model and LSM, the logit-DCBM contains nonlinear factors, where fitting the parameters is a challenging open problem.<n>R-SCORE significantly improves over existing spectral approaches in many cases.
- Score: 7.289672463326423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The degree-corrected block model (DCBM), latent space model (LSM), and $\beta$-model are all popular network models. We combine their modeling ideas and propose the logit-DCBM as a new model. Similar as the $\beta$-model and LSM, the logit-DCBM contains nonlinear factors, where fitting the parameters is a challenging open problem. We resolve this problem by introducing a cancellation trick. We also propose R-SCORE as a recursive community detection algorithm, where in each iteration, we first use the idea above to update our parameter estimation, and then use the results to remove the nonlinear factors in the logit-DCBM so the renormalized model approximately satisfies a low-rank model, just like the DCBM. Our numerical study suggests that R-SCORE significantly improves over existing spectral approaches in many cases. Also, theoretically, we show that the Hamming error rate of R-SCORE is faster than that of SCORE in a specific sparse region, and is at least as fast outside this region.
Related papers
- Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.
By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Towards Robust Model-Based Reinforcement Learning Against Adversarial Corruption [60.958746600254884]
This study tackles the challenges of adversarial corruption in model-based reinforcement learning (RL)
We introduce an algorithm called corruption-robust optimistic MLE (CR-OMLE), which leverages total-variation (TV)-based information ratios as uncertainty weights for MLE.
We extend our weighting technique to the offline setting, and propose an algorithm named corruption-robust pessimistic MLE (CR-PMLE)
arXiv Detail & Related papers (2024-02-14T07:27:30Z) - A Deep Dive into the Connections Between the Renormalization Group and
Deep Learning in the Ising Model [0.0]
Renormalization group (RG) is an essential technique in statistical physics and quantum field theory.
We develop extensive renormalization techniques for the 1D and 2D Ising model to provide a baseline for comparison.
For the 2D Ising model, we successfully generated Ising model samples using the Wolff algorithm, and performed the group flow using a quasi-deterministic method.
arXiv Detail & Related papers (2023-08-21T22:50:54Z) - Interpretable Ensembles of Hyper-Rectangles as Base Models [5.482532589225552]
A new ensemble-based model with uniformly generated axis-parallel hyper-rectangles as base models (HRBM) is proposed.
It is proposed to incorporate HRBMs into the gradient boosting machine (GBM)
arXiv Detail & Related papers (2023-03-15T13:50:36Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Fast and Robust Cascade Model for Multiple Degradation Single Image
Super-Resolution [2.1574781022415364]
Single Image Super-Resolution (SISR) is one of the low-level computer vision problems that has received increased attention in the last few years.
Here, we propose a new formulation of the Convolutional Neural Network (CNN) cascade model.
A new densely connected CNN-architecture is proposed where the output of each sub- module is restricted using some external knowledge.
arXiv Detail & Related papers (2020-11-16T18:59:49Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
We present a modular framework that determines the sparsity pattern of a deep-learning based surrogate using any sparse regression technique.
We show how a different network architecture and sparsity estimator improve model discovery accuracy and convergence on several benchmark examples.
arXiv Detail & Related papers (2020-11-09T11:02:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.