論文の概要: AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement
- arxiv url: http://arxiv.org/abs/2502.16776v1
- Date: Mon, 24 Feb 2025 02:11:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:58:24.864755
- Title: AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement
- Title(参考訳): AISafetyLab: AIの安全性評価と改善のための総合的なフレームワーク
- Authors: Zhexin Zhang, Leqi Lei, Junxiao Yang, Xijie Huang, Yida Lu, Shiyao Cui, Renmiao Chen, Qinglin Zhang, Xinyuan Wang, Hao Wang, Hao Li, Xianqi Lei, Chengwei Pan, Lei Sha, Hongning Wang, Minlie Huang,
- Abstract要約: 我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
- 参考スコア(独自算出の注目度): 73.0700818105842
- License:
- Abstract: As AI models are increasingly deployed across diverse real-world scenarios, ensuring their safety remains a critical yet underexplored challenge. While substantial efforts have been made to evaluate and enhance AI safety, the lack of a standardized framework and comprehensive toolkit poses significant obstacles to systematic research and practical adoption. To bridge this gap, we introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety. AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques while maintaining a well-structured and extensible codebase for future advancements. Additionally, we conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness. To facilitate ongoing research and development in AI safety, AISafetyLab is publicly available at https://github.com/thu-coai/AISafetyLab, and we are committed to its continuous maintenance and improvement.
- Abstract(参考訳): AIモデルは、さまざまな現実世界のシナリオにまたがって展開されるようになっているため、安全性は依然として重要でありながら、未解明の課題である。
AIの安全性を評価し向上するために、かなりの努力がなされているが、標準化されたフレームワークと包括的なツールキットの欠如は、体系的な研究と実践的な採用に重大な障害をもたらす。
このギャップを埋めるために、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合フレームワークとツールキットであるAISafetyLabを紹介します。
AISafetyLabは直感的なインターフェースを備えており、開発者は様々なテクニックをシームレスに適用できると同時に、将来の進歩のために十分に構造化され拡張可能なコードベースを維持できる。
さらに、我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
AIの安全性に関する継続的な研究と開発を促進するため、AISafetyLabはhttps://github.com/thu-coai/AISafetyLabで公開されている。
関連論文リスト
- Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations [15.946242944119385]
AI安全性は、AIシステムの安全な採用とデプロイにおいて重要な領域である。
私たちの目標は、AI安全研究の進歩を促進し、究極的には、デジタルトランスフォーメーションに対する人々の信頼を高めることです。
論文 参考訳(メタデータ) (2024-08-23T09:33:48Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
大規模言語モデル(LLM)は、自然言語処理アプリケーションにおいて、ますます重要な役割を担っている。
本稿では,SODE(Safety and Over-Defensiveness Evaluation)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-12-30T17:37:06Z) - Safety-Gymnasium: A Unified Safe Reinforcement Learning Benchmark [12.660770759420286]
本稿では,単一エージェントとマルチエージェントの両方のシナリオにおいて,安全クリティカルなタスクを含む環境スイートであるSafety-Gymnasiumを提案する。
Safe Policy Optimization (SafePO) という,最先端のSafeRLアルゴリズム16種からなるアルゴリズムのライブラリを提供する。
論文 参考訳(メタデータ) (2023-10-19T08:19:28Z) - Cyber Security Requirements for Platforms Enhancing AI Reproducibility [0.0]
本研究は、人工知能(AI)の分野に焦点を当て、AIプラットフォームを評価するための新しいフレームワークを紹介する。
Floydhub、BEAT、Codalab、Kaggle、OpenMLの5つの人気AIプラットフォームが評価された。
この分析によると、これらのプラットフォームはいずれも、必要なサイバーセキュリティ対策を完全に組み込んでいない。
論文 参考訳(メタデータ) (2023-09-27T09:43:46Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
本調査では,大規模モデルに関する安全研究の枠組みについて述べる。
まず、広範囲にわたる安全問題を導入し、その後、大型モデルの安全性評価手法を掘り下げる。
トレーニングからデプロイメントまで,大規模なモデルの安全性を高めるための戦略について検討する。
論文 参考訳(メタデータ) (2023-02-18T09:32:55Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - TanksWorld: A Multi-Agent Environment for AI Safety Research [5.218815947097599]
複雑なタスクを実行できる人工知能を作成する能力は、AI対応システムの安全かつ確実な運用を保証する能力を急速に上回っている。
AIの安全性リスクを示す最近のシミュレーション環境は、特定の問題に比較的単純または狭く焦点を絞っている。
我々は,3つの重要な側面を持つAI安全研究環境として,AI安全タンクワールドを紹介した。
論文 参考訳(メタデータ) (2020-02-25T21:00:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。