論文の概要: Comparative Analysis of AI-Driven Security Approaches in DevSecOps: Challenges, Solutions, and Future Directions
- arxiv url: http://arxiv.org/abs/2504.19154v1
- Date: Sun, 27 Apr 2025 08:18:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.15318
- Title: Comparative Analysis of AI-Driven Security Approaches in DevSecOps: Challenges, Solutions, and Future Directions
- Title(参考訳): DevSecOpsにおけるAI駆動セキュリティアプローチの比較分析:課題、解決策、今後の方向性
- Authors: Farid Binbeshr, Muhammad Imam,
- Abstract要約: 本研究では,DevSecOpsにおけるAI駆動型セキュリティソリューションの分析と比較を行う。
この発見は、経験的検証、スケーラビリティ、セキュリティ自動化におけるAIの統合のギャップを明らかにしている。
この研究は、DevSecOpsでAIベースのセキュリティフレームワークを最適化するための今後の方向性を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of security within DevOps, known as DevSecOps, has gained traction in modern software development to address security vulnerabilities while maintaining agility. Artificial Intelligence (AI) and Machine Learning (ML) have been increasingly leveraged to enhance security automation, threat detection, and compliance enforcement. However, existing studies primarily focus on individual aspects of AI-driven security in DevSecOps, lacking a structured comparison of methodologies. This study conducts a systematic literature review (SLR) to analyze and compare AI-driven security solutions in DevSecOps, evaluating their technical capabilities, implementation challenges, and operational impacts. The findings reveal gaps in empirical validation, scalability, and integration of AI in security automation. The study highlights best practices, identifies research gaps, and proposes future directions for optimizing AI-based security frameworks in DevSecOps.
- Abstract(参考訳): DevSecOpsとして知られるDevOps内のセキュリティの統合は、アジリティを維持しながらセキュリティ上の脆弱性に対処するため、現代のソフトウェア開発で注目を集めている。
人工知能(AI)と機械学習(ML)は、セキュリティ自動化、脅威検出、コンプライアンス執行を強化するためにますます活用されている。
しかし、既存の研究は主にDevSecOpsにおけるAI駆動セキュリティの個々の側面に焦点を当てており、方法論の構造化された比較を欠いている。
この研究は、DevSecOpsのAI駆動型セキュリティソリューションを分析し比較するための体系的な文献レビュー(SLR)を実施し、その技術的能力、実装上の課題、運用への影響を評価する。
この発見は、経験的検証、スケーラビリティ、セキュリティ自動化におけるAIの統合のギャップを明らかにしている。
この研究はベストプラクティスを強調し、研究ギャップを特定し、DevSecOpsでAIベースのセキュリティフレームワークを最適化するための今後の方向性を提案する。
関連論文リスト
- AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-24T02:11:52Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Position: A taxonomy for reporting and describing AI security incidents [57.98317583163334]
AIシステムのセキュリティインシデントを記述し報告するためには、具体的が必要である、と我々は主張する。
非AIセキュリティまたは汎用AI安全インシデントレポートの既存のフレームワークは、AIセキュリティの特定の特性をキャプチャするには不十分である。
論文 参考訳(メタデータ) (2024-12-19T13:50:26Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
本稿では,人工知能(AI)の攻撃的サイバーセキュリティへの統合について検討する。
サイバー攻撃をシミュレートし実行するために設計された、自律的なAIエージェントであるReaperAIを開発している。
ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
論文 参考訳(メタデータ) (2024-05-09T18:15:12Z) - AI for DevSecOps: A Landscape and Future Opportunities [6.513361705307775]
DevSecOpsは、最も急速に進化するソフトウェア開発パラダイムの1つだ。
ソフトウェアシステムのセキュリティに関する懸念が高まっているため、DevSecOpsパラダイムが注目されている。
DevOpsワークフローにセキュリティを統合することは、アジリティに影響を与え、デリバリ速度を妨げます。
論文 参考訳(メタデータ) (2024-04-07T07:24:58Z) - Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory [0.0]
システム複雑度指数(SCI)、Lyapunov Exponent for AI stability(LEAIS)、Nash Equilibrium Robustness(NER)の3つの指標を導入する新しいアプローチを提案する。
SCIはAIシステムの固有の複雑さを定量化し、LEAISはその安定性と摂動に対する感受性を捉え、NERは敵の操作に対する戦略的堅牢性を評価する。
論文 参考訳(メタデータ) (2024-04-07T07:05:59Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Cyber Security Requirements for Platforms Enhancing AI Reproducibility [0.0]
本研究は、人工知能(AI)の分野に焦点を当て、AIプラットフォームを評価するための新しいフレームワークを紹介する。
Floydhub、BEAT、Codalab、Kaggle、OpenMLの5つの人気AIプラットフォームが評価された。
この分析によると、これらのプラットフォームはいずれも、必要なサイバーセキュリティ対策を完全に組み込んでいない。
論文 参考訳(メタデータ) (2023-09-27T09:43:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。