論文の概要: Fast, Accurate Manifold Denoising by Tunneling Riemannian Optimization
- arxiv url: http://arxiv.org/abs/2502.16819v1
- Date: Mon, 24 Feb 2025 04:02:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:01.882030
- Title: Fast, Accurate Manifold Denoising by Tunneling Riemannian Optimization
- Title(参考訳): トンネルリングリーマン最適化による高速高精度マニフォールドデノイング
- Authors: Shiyu Wang, Mariam Avagyan, Yihan Shen, Arnaud Lamy, Tingran Wang, Szabolcs Márka, Zsuzsa Márka, John Wright,
- Abstract要約: 未知の$d$-dimensional manifold $M からサンプリングされたノイズの多い新しいデータポイントを mathbbRD$ において、ノイズの多いサンプルのみを用いて効率よく分解する問題を考える。
本研究は「学習から学習へ」という概念を「学習から最適化へ」とフレーミングすることで、テスト時効率のよい多様体復調のための枠組みを提案する。
- 参考スコア(独自算出の注目度): 4.597774455074727
- License:
- Abstract: Learned denoisers play a fundamental role in various signal generation (e.g., diffusion models) and reconstruction (e.g., compressed sensing) architectures, whose success derives from their ability to leverage low-dimensional structure in data. Existing denoising methods, however, either rely on local approximations that require a linear scan of the entire dataset or treat denoising as generic function approximation problems, often sacrificing efficiency and interpretability. We consider the problem of efficiently denoising a new noisy data point sampled from an unknown $d$-dimensional manifold $M \in \mathbb{R}^D$, using only noisy samples. This work proposes a framework for test-time efficient manifold denoising, by framing the concept of "learning-to-denoise" as "learning-to-optimize". We have two technical innovations: (i) online learning methods which learn to optimize over the manifold of clean signals using only noisy data, effectively "growing" an optimizer one sample at a time. (ii) mixed-order methods which guarantee that the learned optimizers achieve global optimality, ensuring both efficiency and near-optimal denoising performance. We corroborate these claims with theoretical analyses of both the complexity and denoising performance of mixed-order traversal. Our experiments on scientific manifolds demonstrate significantly improved complexity-performance tradeoffs compared to nearest neighbor search, which underpins existing provable denoising approaches based on exhaustive search.
- Abstract(参考訳): 学習されたデノイザは、様々な信号生成(例えば拡散モデル)と再構成(例えば圧縮センシング)アーキテクチャにおいて基本的な役割を果たす。
しかし、既存のデノナイジング法は、データセット全体の線形スキャンを必要とする局所近似に依存するか、デノナイジングを一般的な関数近似問題として扱うかのいずれかであり、効率と解釈性を犠牲にすることが多い。
我々は、未知の$d$次元多様体$M \in \mathbb{R}^D$からサンプリングされた新しいノイズデータポイントを、ノイズサンプルのみを用いて効率的に復調する問題を考える。
本研究は「学習から学習へ」という概念を「学習から最適化へ」とフレーミングすることで、テスト時効率のよい多様体をデノナイズする枠組みを提案する。
技術革新は2つあります。
二 ノイズの多いデータのみを用いてクリーン信号の多様体上で最適化を学習するオンライン学習方法。
二 学習した最適化者が大域的最適性を達成することを保証し、効率性と準最適復調性能を両立させる混合順序法。
我々はこれらの主張を、混合次トラバーサルの複雑さと騒音性能の理論的解析で裏付ける。
科学的多様体に関する実験は, 近隣探索と比較して, 複雑性と性能のトレードオフを著しく改善し, 既存の証明可能な探索手法の基盤となっている。
関連論文リスト
- Enhancing PAC Learning of Half spaces Through Robust Optimization Techniques [0.0]
PACは、一定の悪意のある雑音下でハーフスペースを学習し、トレーニングデータのごく一部が逆向きに破損する。
半宇宙学習における雑音耐性を考慮に入れた理論的枠組みを拡張した,新しい効率的なアルゴリズムを提案する。
本稿では,従来の最先端手法と比較して,悪質な雑音に対して優れた頑健性を示すアルゴリズムの性能を包括的に分析する。
論文 参考訳(メタデータ) (2024-10-21T23:08:17Z) - Unsupervised Image Denoising in Real-World Scenarios via
Self-Collaboration Parallel Generative Adversarial Branches [28.61750072026107]
ディープラーニング手法は、特に大規模なペア化されたデータセットでトレーニングされた場合、画像の認知において顕著なパフォーマンスを示している。
ディープラーニング手法は、特に大規模なペア化されたデータセットでトレーニングされた場合、画像の認知において顕著なパフォーマンスを示している。
しかし、そのようなペア化されたデータセットを現実のシナリオで取得することは、大きな課題となる。
論文 参考訳(メタデータ) (2023-08-13T14:04:46Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
論文 参考訳(メタデータ) (2023-05-17T13:56:48Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders [62.997667081978825]
ノイズの多いマルチチャネル入力からクリーンなニューロン活動信号を生成することを学習する完全畳み込みデノイングオートエンコーダを提案する。
シミュレーションデータを用いた実験結果から,提案手法はノイズ崩壊型ニューラルネットワークの品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-09-18T14:51:24Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - CDLNet: Robust and Interpretable Denoising Through Deep Convolutional
Dictionary Learning [6.6234935958112295]
unrolled optimization networksは、ディープニューラルネットワークを構築するための解釈可能な代替案を提案する。
提案したモデルが,同様のパラメータ数にスケールすると,最先端のデノイジングモデルに勝ることを示す。
論文 参考訳(メタデータ) (2021-03-05T01:15:59Z) - Multiscale Sparsifying Transform Learning for Image Denoising [24.04866867707783]
細部部分バンドの分極化を必要とせずに,効率的なマルチスケール手法を考案できることを示す。
研究手法を網羅的に分析・評価し、よく知られた最先端の手法と比較する。
論文 参考訳(メタデータ) (2020-03-25T08:13:16Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
本稿では,操作を微分可能で局所的に一定ではない操作に変換する手法を提案する。
提案手法は摂動に依拠し,既存の解法とともに容易に利用することができる。
本稿では,この枠組みが,構造化予測において発達した損失の族とどのように結びつくかを示し,学習課題におけるそれらの使用に関する理論的保証を与える。
論文 参考訳(メタデータ) (2020-02-20T11:11:32Z) - Noise2Inverse: Self-supervised deep convolutional denoising for
tomography [0.0]
Noise2Inverseは、線形画像再構成アルゴリズムのためのディープCNNに基づくDenoising法である。
そこで我々は,そのような学習がCNNを実際に獲得することを示す理論的枠組みを構築した。
シミュレーションCTデータセットにおいて、Noss2Inverseはピーク信号対雑音比と構造類似度指数の改善を示す。
論文 参考訳(メタデータ) (2020-01-31T12:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。