A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions
- URL: http://arxiv.org/abs/2406.03712v2
- Date: Mon, 09 Dec 2024 02:14:08 GMT
- Title: A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions
- Authors: Lei Liu, Xiaoyan Yang, Junchi Lei, Yue Shen, Jian Wang, Peng Wei, Zhixuan Chu, Zhan Qin, Kui Ren,
- Abstract summary: We trace the recent advances of Medical Large Language Models (Med-LLMs)<n>The wide-ranging applications of Med-LLMs are investigated across various healthcare domains.<n>We discuss the challenges associated with ensuring fairness, accountability, privacy, and robustness.
- Score: 23.36640449085249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of Large Language Models (LLMs), medical artificial intelligence (AI) has experienced substantial technological progress and paradigm shifts, highlighting the potential of LLMs to streamline healthcare delivery and improve patient outcomes. Considering this rapid technical progress, in this survey, we trace the recent advances of Medical Large Language Models (Med-LLMs), including the background, key findings, and mainstream techniques, especially for the evolution from general-purpose models to medical-specialized applications. Firstly, we delve into the foundational technology of Med-LLMs, indicating how general models can be progressively adapted and refined for the complicated medical tasks. Secondly, the wide-ranging applications of Med-LLMs are investigated across various healthcare domains, as well as an up-to-date review of existing Med-LLMs. The transformative impact of these models on daily medical practice is evident through their ability to assist clinicians, educators, and patients. Recognizing the importance of responsible innovation, we discuss the challenges associated with ensuring fairness, accountability, privacy, and robustness. Ethical considerations, rigorous evaluation methodologies, and the establishment of regulatory frameworks are crucial for building trustworthiness in the real-world system. We emphasize the need for ongoing scrutiny and development to maintain high standards of safety and reliability. Finally, we anticipate possible future trajectories for Med-LLMs, identifying key avenues for prudent expansion. By consolidating these insights, our review aims to provide professionals and researchers with a thorough understanding of the strengths and limitations of Med-LLMs, fostering a balanced and ethical approach to their integration into the healthcare ecosystem.
Related papers
- Biomedical Foundation Model: A Survey [84.26268124754792]
Foundation models are large-scale pre-trained models that learn from extensive unlabeled datasets.
These models can be adapted to various applications such as question answering and visual understanding.
This survey explores the potential of foundation models across diverse domains within biomedical fields.
arXiv Detail & Related papers (2025-03-03T22:42:00Z) - Vision Language Models in Medicine [3.964982657945488]
Medical Vision-Language Models (Med-VLMs) integrate visual and textual data to enhance healthcare outcomes.
The transformative impact of Med-VLMs on clinical practice, education, and patient care is highlighted.
challenges like data scarcity, narrow task generalization, interpretability issues, and ethical concerns like fairness, accountability, and privacy are highlighted.
Future directions include leveraging large-scale, diverse datasets, improving cross-modal generalization, and enhancing interpretability.
arXiv Detail & Related papers (2025-02-24T22:53:22Z) - Fair Foundation Models for Medical Image Analysis: Challenges and Perspectives [2.5573554033525636]
Foundation Models (FMs), trained on vast datasets through self-supervised learning, enable efficient adaptation across medical imaging tasks.
These models demonstrate potential for enhancing fairness, though significant challenges remain in achieving consistent performance across demographic groups.
This comprehensive framework advances current knowledge by demonstrating how systematic bias mitigation, combined with policy engagement, can effectively address both technical and institutional barriers to equitable AI in healthcare.
arXiv Detail & Related papers (2025-02-24T04:54:49Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - The Role of Language Models in Modern Healthcare: A Comprehensive Review [2.048226951354646]
The application of large language models (LLMs) in healthcare has gained significant attention.
This review examines the trajectory of language models from their early stages to the current state-of-the-art LLMs.
arXiv Detail & Related papers (2024-09-25T12:15:15Z) - From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice [12.390859712280328]
Large Language Models (LLMs) have rapidly evolved from text-based systems to multimodal platforms.
We examine the current landscape of MLLMs in healthcare, analyzing their applications across clinical decision support, medical imaging, patient engagement, and research.
arXiv Detail & Related papers (2024-09-14T02:35:29Z) - Towards Reliable Medical Question Answering: Techniques and Challenges in Mitigating Hallucinations in Language Models [1.03590082373586]
This paper conducts a scoping study of existing techniques for mitigating hallucinations in knowledge-based task in general and especially for medical domains.
Key methods covered in the paper include Retrieval-Augmented Generation (RAG)-based techniques, iterative feedback loops, supervised fine-tuning, and prompt engineering.
These techniques, while promising in general contexts, require further adaptation and optimization for the medical domain due to its unique demands for up-to-date, specialized knowledge and strict adherence to medical guidelines.
arXiv Detail & Related papers (2024-08-25T11:09:15Z) - Large Language Models for Medicine: A Survey [31.720633684205424]
Large language models (LLMs) have been developed to address challenges in the digital economy's landscape of digital intelligence.
This paper focuses on the requirements and applications of medical LLMs.
arXiv Detail & Related papers (2024-05-20T02:32:26Z) - Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare [14.399086205317358]
Foundation models (FMs) are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback.
These models are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.
The incorporation of FL with these sophisticated models presents a promising strategy to harness their analytical power while safeguarding the privacy of sensitive medical data.
arXiv Detail & Related papers (2024-05-10T19:22:24Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - Large language models in healthcare and medical domain: A review [4.456243157307507]
Large language models (LLMs) provide proficient responses to free-text queries.
This review explores the potential of LLMs to amplify the efficiency and effectiveness of diverse healthcare applications.
arXiv Detail & Related papers (2023-12-12T20:54:51Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
Large-scale Artificial General Intelligence (AGI) models have achieved unprecedented success in a variety of general domain tasks.
These models face notable challenges arising from the medical field's inherent complexities and unique characteristics.
This review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
arXiv Detail & Related papers (2023-06-08T18:04:13Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
We conduct a review of recent literature concerning Privacy-Preserving Machine Learning (PPML) for healthcare.
We primarily focus on privacy-preserving training and inference-as-a-service.
The aim of this review is to guide the development of private and efficient ML models in healthcare.
arXiv Detail & Related papers (2023-03-27T19:20:51Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.