論文の概要: Sarang at DEFACTIFY 4.0: Detecting AI-Generated Text Using Noised Data and an Ensemble of DeBERTa Models
- arxiv url: http://arxiv.org/abs/2502.16857v1
- Date: Mon, 24 Feb 2025 05:32:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:58:23.308077
- Title: Sarang at DEFACTIFY 4.0: Detecting AI-Generated Text Using Noised Data and an Ensemble of DeBERTa Models
- Title(参考訳): DEFACTIFY 4.0: ノイズデータとDeBERTaモデルのアンサンブルを用いたAI生成テキストの検出
- Authors: Avinash Trivedi, Sangeetha Sivanesan,
- Abstract要約: 本稿では,AI生成テキストの検出に有効な手法を提案する。
Defactify 4.0共有タスクのために、マルチモーダルな事実チェックとヘイトスピーチ検出に関する第4ワークショップで開発された。
私たちのチーム(Sarang)は、それぞれ1.0点と0.9531点のF1スコアで、両方のタスクで1位を獲得しました。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents an effective approach to detect AI-generated text, developed for the Defactify 4.0 shared task at the fourth workshop on multimodal fact checking and hate speech detection. The task consists of two subtasks: Task-A, classifying whether a text is AI generated or human written, and Task-B, classifying the specific large language model that generated the text. Our team (Sarang) achieved the 1st place in both tasks with F1 scores of 1.0 and 0.9531, respectively. The methodology involves adding noise to the dataset to improve model robustness and generalization. We used an ensemble of DeBERTa models to effectively capture complex patterns in the text. The result indicates the effectiveness of our noise-driven and ensemble-based approach, setting a new standard in AI-generated text detection and providing guidance for future developments.
- Abstract(参考訳): 本稿では,マルチモーダル事実チェックとヘイトスピーチ検出に関する第4回ワークショップで,Defactify 4.0共有タスクのために開発されたAI生成テキストの検出に有効なアプローチを提案する。
このタスクは2つのサブタスクから構成される: Task-A、テキストがAI生成か人書きかの分類、Task-B、テキスト生成した特定の大きな言語モデルを分類する。
私たちのチーム(Sarang)は、それぞれ1.0点と0.9531点のF1スコアで、両方のタスクで1位を獲得しました。
この手法には、モデルの堅牢性と一般化を改善するためにデータセットにノイズを追加することが含まれる。
テキスト内の複雑なパターンを効果的にキャプチャするために、DeBERTaモデルのアンサンブルを使用しました。
その結果、ノイズ駆動型およびアンサンブルベースのアプローチの有効性を示し、AIによるテキスト検出の新しい標準を設定し、将来の開発のためのガイダンスを提供する。
関連論文リスト
- LuxVeri at GenAI Detection Task 1: Inverse Perplexity Weighted Ensemble for Robust Detection of AI-Generated Text across English and Multilingual Contexts [0.8495482945981923]
本稿では,AI生成コンテンツの検出に関するコリング2025ワークショップのタスク1のために開発されたシステムについて述べる。
提案手法では,各モデルの逆パープレキシティに応じて重みが割り当てられたモデルのアンサンブルを利用して,分類精度を向上させる。
本研究は, 単言語と多言語の両方において, 機械によるテキスト検出の堅牢性を向上させるために, 逆パープレキシティ重み付けの有効性を示すものである。
論文 参考訳(メタデータ) (2025-01-21T06:32:32Z) - DeTeCtive: Detecting AI-generated Text via Multi-Level Contrastive Learning [24.99797253885887]
このタスクを達成するための鍵は、異なる著者のスタイルを区別することにある、と我々は主張する。
DeTeCtiveは,マルチタスクの補助的,マルチレベルのコントラスト学習フレームワークである。
我々の手法はテキストエンコーダと互換性がある。
論文 参考訳(メタデータ) (2024-10-28T12:34:49Z) - Is Contrasting All You Need? Contrastive Learning for the Detection and Attribution of AI-generated Text [4.902089836908786]
WhosAIは、与えられた入力テキストが人間かAIによって生成されたかを予測するために設計された3重ネットワークコントラスト学習フレームワークである。
提案するフレームワークは,チューリングテストとオーサリングの両タスクにおいて,優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2024-07-12T15:44:56Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
記述的なテキストクエリーを与えられたテキストベースの人物検索は、画像ギャラリーからベストマッチした人物を検索することを目的としている。
このようなクロスモーダル検索タスクは、重要なモダリティギャップ、きめ細かい相違、注釈付きデータの不十分さのため、かなり難しい。
本稿では,テキストに基づく人物検索のための2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-11-15T16:26:49Z) - UniverSLU: Universal Spoken Language Understanding for Diverse Tasks with Natural Language Instructions [64.50935101415776]
我々は,様々な音声言語理解(SLU)タスクを共同で行う単一モデルを構築した。
我々は17のデータセットと9の言語にまたがる12の音声分類とシーケンス生成タスクタイプに対して,1つのマルチタスク学習モデル"UniverSLU"の有効性を実証した。
論文 参考訳(メタデータ) (2023-10-04T17:10:23Z) - Generative AI Text Classification using Ensemble LLM Approaches [0.12483023446237698]
大規模言語モデル(LLM)は、さまざまなAIや自然言語処理タスクで素晴らしいパフォーマンスを示している。
本研究では,異なる学習済みLLMから確率を生成するアンサンブルニューラルモデルを提案する。
AIと人間の生成したテキストを区別する最初のタスクとして、私たちのモデルは第5位と第13位にランクされた。
論文 参考訳(メタデータ) (2023-09-14T14:41:46Z) - FacTool: Factuality Detection in Generative AI -- A Tool Augmented
Framework for Multi-Task and Multi-Domain Scenarios [87.12753459582116]
より広い範囲のタスクは、生成モデルによって処理されると、事実エラーを含むリスクが増大する。
大規模言語モデルにより生成されたテキストの事実誤りを検出するためのタスクおよびドメインに依存しないフレームワークであるFacToolを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:51Z) - VioLA: Unified Codec Language Models for Speech Recognition, Synthesis,
and Translation [91.39949385661379]
VioLAは1つの自動回帰トランスフォーマーデコーダのみのネットワークで、音声とテキストを含む様々なモーダルタスクを統合する。
まず、オフラインのニューラルエンコーダを用いて、全ての発話を個別のトークンに変換する。
さらに,タスクID(TID)と言語ID(LID)をモデルに統合し,異なる言語やタスクを扱うモデリング能力を向上させる。
論文 参考訳(メタデータ) (2023-05-25T14:39:47Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
2つのタスクのパフォーマンス向上という文脈において、逐次微調整とマルチタスク学習のモデルを比較した。
この結果から,2つのタスクのうち,第1のタスクにおいて逐次マルチタスク学習は良好に調整できるが,第2のタスクでは性能が低下し,過度な適合に苦しむことが明らかとなった。
論文 参考訳(メタデータ) (2022-10-31T13:26:08Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
本稿では,DSTC-10の音声対話課題における知識ベースタスク指向対話モデリングのための一般化モデルの構築について述べる。
我々は,人工誤り注入やラウンドトリップ音声変換など,手書きデータに対する広範なデータ拡張戦略を採用している。
本手法は, 客観的評価では3位, 最終公式評価では2位である。
論文 参考訳(メタデータ) (2022-03-08T12:26:57Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
NLPタスク(TextFlint)のための多言語ロバスト性評価プラットフォームを提案する。
普遍的なテキスト変換、タスク固有の変換、敵攻撃、サブポピュレーション、およびそれらの組み合わせを取り入れ、包括的な堅牢性分析を提供する。
TextFlintは、モデルの堅牢性の欠点に対処するために、完全な分析レポートとターゲットとした拡張データを生成します。
論文 参考訳(メタデータ) (2021-03-21T17:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。