Zero-shot Load Forecasting for Integrated Energy Systems: A Large Language Model-based Framework with Multi-task Learning
- URL: http://arxiv.org/abs/2502.16896v1
- Date: Mon, 24 Feb 2025 06:50:26 GMT
- Title: Zero-shot Load Forecasting for Integrated Energy Systems: A Large Language Model-based Framework with Multi-task Learning
- Authors: Jiaheng Li, Donghe Li, Ye Yang, Huan Xi, Yu Xiao, Li Sun, Dou An, Qingyu Yang,
- Abstract summary: This paper proposes a novel zero-shot load forecasting framework based on large language models (LLMs)<n>The framework's effectiveness was validated on a real-world dataset comprising load profiles from 20 Australian solar-powered households.
- Score: 12.613896943394332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing penetration of renewable energy sources in power systems has increased the complexity and uncertainty of load forecasting, especially for integrated energy systems with multiple energy carriers. Traditional forecasting methods heavily rely on historical data and exhibit limited transferability across different scenarios, posing significant challenges for emerging applications in smart grids and energy internet. This paper proposes the TSLLM-Load Forecasting Mechanism, a novel zero-shot load forecasting framework based on large language models (LLMs) to address these challenges. The framework consists of three key components: a data preprocessing module that handles multi-source energy load data, a time series prompt generation module that bridges the semantic gap between energy data and LLMs through multi-task learning and similarity alignment, and a prediction module that leverages pre-trained LLMs for accurate forecasting. The framework's effectiveness was validated on a real-world dataset comprising load profiles from 20 Australian solar-powered households, demonstrating superior performance in both conventional and zero-shot scenarios. In conventional testing, our method achieved a Mean Squared Error (MSE) of 0.4163 and a Mean Absolute Error (MAE) of 0.3760, outperforming existing approaches by at least 8\%. In zero-shot prediction experiments across 19 households, the framework maintained consistent accuracy with a total MSE of 11.2712 and MAE of 7.6709, showing at least 12\% improvement over current methods. The results validate the framework's potential for accurate and transferable load forecasting in integrated energy systems, particularly beneficial for renewable energy integration and smart grid applications.
Related papers
- Electrical Load Forecasting over Multihop Smart Metering Networks with Federated Learning [1.1008520905907015]
This paper presents a novel personalized federated learning (PFL) method for high-quality load forecasting in metering networks.<n>To minimize the load forecasting delays in our PFL model, we study a new latency optimization problem based on optimal resource allocation at SMs.<n>Our method outperforms existing approaches in terms of better load forecasting and reduced operational latency costs.
arXiv Detail & Related papers (2025-02-24T15:04:29Z) - Electrical Load Forecasting in Smart Grid: A Personalized Federated Learning Approach [9.687203504689563]
Electric load forecasting is essential for power management and stability in smart grids.
Traditional machine learning (ML) methods are often employed for load forecasting but require data sharing.
Federated learning (FL) can address this issue by running distributed ML models at local SMs without data exchange.
arXiv Detail & Related papers (2024-11-15T22:44:50Z) - EF-LLM: Energy Forecasting LLM with AI-assisted Automation, Enhanced Sparse Prediction, Hallucination Detection [8.540308127679985]
We propose the Energy Forecasting Large Language Model (EF-LLM), which integrates domain knowledge and temporal data for time-series forecasting.<n>EF-LLM's human-AI interaction capabilities lower the entry barrier in forecasting tasks, reducing the need for extra expert involvement.<n>We have achieved success in energy prediction scenarios for load, photovoltaic, and wind power forecast.
arXiv Detail & Related papers (2024-10-30T11:22:37Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.<n>We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.<n>We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Deep Convolutional Neural Networks for Short-Term Multi-Energy Demand Prediction of Integrated Energy Systems [49.1574468325115]
This paper develops six novel prediction models based on Convolutional Neural Networks (CNNs) for forecasting multi-energy power consumptions.
The models are applied in a comprehensive manner on a novel integrated electrical, heat and gas network system.
arXiv Detail & Related papers (2023-12-24T14:56:23Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - MATNet: Multi-Level Fusion Transformer-Based Model for Day-Ahead PV
Generation Forecasting [0.47518865271427785]
MATNet is a novel self-attention transformer-based architecture for PV power generation forecasting.
It consists of a hybrid approach that combines the AI paradigm with the prior physical knowledge of PV power generation.
Results show that our proposed architecture significantly outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2023-06-17T14:03:09Z) - Appliance Level Short-term Load Forecasting via Recurrent Neural Network [6.351541960369854]
We present an STLF algorithm for efficiently predicting the power consumption of individual electrical appliances.
The proposed method builds upon a powerful recurrent neural network (RNN) architecture in deep learning.
arXiv Detail & Related papers (2021-11-23T16:56:37Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
This work provides positive evidence using a broad meta-learning framework.
residual connections act as a meta-learning adaptation mechanism.
We show that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining.
arXiv Detail & Related papers (2020-02-07T16:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.