論文の概要: ENACT-Heart -- ENsemble-based Assessment Using CNN and Transformer on Heart Sounds
- arxiv url: http://arxiv.org/abs/2502.16914v1
- Date: Mon, 24 Feb 2025 07:19:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:14.691713
- Title: ENACT-Heart -- ENsemble-based Assessment Using CNN and Transformer on Heart Sounds
- Title(参考訳): ENACT-Heart --CNNとトランスフォーマーを用いた心臓音のアンサンブルに基づく評価
- Authors: Jiho Han, Adnan Shaout,
- Abstract要約: 本研究では、視覚変換器(ViT)の原理を音声解析に適用し、特に心臓の音に着目した。
ENACT-Heartは、CNNとViTの相補的な長所をMixture of Experts (MoE)フレームワークを通じて活用し、97.52%の顕著な分類精度を達成する、新しいアンサンブルアプローチである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study explores the application of Vision Transformer (ViT) principles in audio analysis, specifically focusing on heart sounds. This paper introduces ENACT-Heart - a novel ensemble approach that leverages the complementary strengths of Convolutional Neural Networks (CNN) and ViT through a Mixture of Experts (MoE) framework, achieving a remarkable classification accuracy of 97.52%. This outperforms the individual contributions of ViT (93.88%) and CNN (95.45%), demonstrating the potential for enhanced diagnostic accuracy in cardiovascular health monitoring. These results demonstrate the potential of ensemble methods in enhancing classification performance for cardiovascular health monitoring and diagnosis.
- Abstract(参考訳): 本研究では、視覚変換器(ViT)の原理を音声解析に適用し、特に心臓の音に着目した。
本稿では,Mixture of Experts (MoE)フレームワークを用いて,畳み込みニューラルネットワーク(CNN)とViTの相補的強みを活用する新しいアンサンブルアプローチENACT-Heartを紹介する。
これは、ViT(93.88%)とCNN(95.45%)の個々の貢献よりも優れており、心臓血管の健康モニタリングにおける診断精度の向上の可能性を示している。
これらの結果は,心血管の健康モニタリングと診断の分類性能を高めるためのアンサンブル法の可能性を示している。
関連論文リスト
- Large-scale cross-modality pretrained model enhances cardiovascular state estimation and cardiomyopathy detection from electrocardiograms: An AI system development and multi-center validation study [29.842103054029433]
本研究はCMRの診断強度を活用して心電図解析を強化する革新的なモデルであるCardiacNetsを紹介する。
心臓神経は、冠動脈疾患、心筋症、心膜炎、心不全、肺高血圧など、潜在的なCVDの心臓機能指標とスクリーニングを評価する。
その結果、CardiacNetsは従来のECGのみのモデルより一貫して優れており、スクリーニング精度が大幅に向上していることがわかった。
論文 参考訳(メタデータ) (2024-11-19T09:09:14Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Joint optimization of a $\beta$-VAE for ECG task-specific feature
extraction [1.3124513975412255]
説明可能な特徴抽出器として$beta$-variational autoencoders (VAEs) を用いた。
信号再構成と心機能予測を共同で最適化することにより,予測能力の向上を図る。
論文 参考訳(メタデータ) (2023-03-28T12:53:07Z) - IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification [0.9449650062296824]
臨床環境では、心臓科医が標準12チャンネル心電図記録に基づいて診断を行う。
本稿では,標準ECG記録で利用可能なマルチチャネル情報を活用し,ビート,リズム,チャネルレベルのパターンを学習するモデルを提案する。
実験結果から,マクロ平均ROC-AUCスコアは0.9216,平均精度は88.85%,最大F1スコアは0.8057であった。
論文 参考訳(メタデータ) (2022-04-06T16:29:10Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
本稿では,意図に基づく畳み込みニューラルネットワーク(ABCNN)を用いて生の心電図信号に対処し,正確な不整脈検出のための情報的依存関係を自動的に抽出する手法を提案する。
我々の主な課題は、正常な心拍から不整脈を見つけ、その間に5種類の不整脈から心疾患を正確に認識することである。
実験の結果,提案するABCNNは広く使用されているベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-08-18T14:55:46Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
我々は,心電図の診断を分類するために,形態や信号処理機能に適合した勾配強化木のアンサンブルを用いたアルゴリズムを構築した。
各リードについて、心拍変動、PQRSTテンプレート形状、全信号波形から特徴を導出する。
各クラスに属するECGインスタンスの確率を予測するため、全12項目の特徴と合わせて、勾配を増す決定ツリーの集合に適合する。
論文 参考訳(メタデータ) (2020-10-21T18:11:36Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z) - L-CO-Net: Learned Condensation-Optimization Network for Clinical
Parameter Estimation from Cardiac Cine MRI [0.0]
学習グループ構造と正規化ウェイトプルーナーを兼ね備えた完全畳み込みセグメンタを実装した。
心循環を通じて健常な1群と4群の病理組織を特徴とするACDCデータセットの枠組みを検証した。
論文 参考訳(メタデータ) (2020-04-21T23:59:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。