論文の概要: Benchmarking Temporal Reasoning and Alignment Across Chinese Dynasties
- arxiv url: http://arxiv.org/abs/2502.16922v1
- Date: Mon, 24 Feb 2025 07:27:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:55:13.595632
- Title: Benchmarking Temporal Reasoning and Alignment Across Chinese Dynasties
- Title(参考訳): 中国の諸王朝における時間的推論とアライメントのベンチマーク
- Authors: Zhenglin Wang, Jialong Wu, Pengfei LI, Yong Jiang, Deyu Zhou,
- Abstract要約: 時間的推論に基づく大規模言語モデル評価のためのベンチマークである中国語時間推論(CTM)を紹介する。
CTMは、相互関係、ペアワイズ時間的アライメント、文脈化と文化的な推論を強調している。
- 参考スコア(独自算出の注目度): 38.87423278027958
- License:
- Abstract: Temporal reasoning is fundamental to human cognition and is crucial for various real-world applications. While recent advances in Large Language Models have demonstrated promising capabilities in temporal reasoning, existing benchmarks primarily rely on rule-based construction, lack contextual depth, and involve a limited range of temporal entities. To address these limitations, we introduce Chinese Time Reasoning (CTM), a benchmark designed to evaluate LLMs on temporal reasoning within the extensive scope of Chinese dynastic chronology. CTM emphasizes cross-entity relationships, pairwise temporal alignment, and contextualized and culturally-grounded reasoning, providing a comprehensive evaluation. Extensive experimental results reveal the challenges posed by CTM and highlight potential avenues for improvement.
- Abstract(参考訳): 時間的推論は人間の認知の基本であり、様々な現実世界の応用に不可欠である。
大規模言語モデルの最近の進歩は、時間的推論において有望な能力を示しているが、既存のベンチマークは主にルールベースの構成に依存しており、文脈的な深さが欠如しており、時間的実体が限られている。
これらの制約に対処するために,中国王朝年代学の範囲内での時間的推論におけるLLMの評価を目的としたベンチマークであるCTM(China Time Reasoning)を導入する。
CTMは、相互関係、ペアワイズ時間的アライメント、文脈的、文化的な推論を強調し、包括的な評価を提供する。
広範囲にわたる実験結果から,CTMがもたらす課題が明らかとなり,改善への道のりが明らかにされた。
関連論文リスト
- Living in the Moment: Can Large Language Models Grasp Co-Temporal Reasoning? [70.19200858203388]
時間的推論は、世界を理解するための大きな言語モデルの基本である。
CoTempQAは4つの時間的シナリオを含むベンチマークである。
実験の結果,LLMの性能と人間レベルの推論との間に大きなギャップがあることが判明した。
論文 参考訳(メタデータ) (2024-06-13T12:56:21Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
収集された軌道上でのDPO(Direct Preference Optimization)を通して計画に基づく推論を学習するフレームワークを提案する。
論理的推論ベンチマークの挑戦的な結果から,学習フレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-02-01T15:18:33Z) - TimeBench: A Comprehensive Evaluation of Temporal Reasoning Abilities in Large Language Models [29.656403397725395]
階層的時間的推論ベンチマークであるTimeBenchを提案する。
TimeBenchは、大規模な言語モデルの時間的推論能力を調べるための徹底的な評価を提供する。
実験結果から, 最先端のLDMと人間の間には, 顕著な性能差があることが示唆された。
論文 参考訳(メタデータ) (2023-11-29T14:30:16Z) - DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy [76.58614128865652]
非決定性から決定性への進化として推論過程を再考する新しい視点であるDetermLRを提案する。
まず、既知の条件を次の2つのタイプに分類する: 決定的および不決定的前提 これは、推論プロセスのオール方向を提供し、不決定的データを段階的決定的洞察に変換する際のLCMを導く。
我々は、利用可能な施設の保存と抽出、推論メモリによる推論パスの自動化、そしてその後の推論ステップに関する歴史的推論の詳細を保存する。
論文 参考訳(メタデータ) (2023-10-28T10:05:51Z) - TRAM: Benchmarking Temporal Reasoning for Large Language Models [12.112914393948415]
10個のデータセットからなる時間的推論ベンチマークであるTRAMを紹介する。
GPT-4やLlama2のような一般的な言語モデルをゼロショットや少数ショットのシナリオで評価する。
以上の結果から,最も優れたモデルラグは人的パフォーマンスに大きく遅れていることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T00:59:07Z) - An Overview Of Temporal Commonsense Reasoning and Acquisition [20.108317515225504]
時間的コモンセンス推論(英: Temporal Commonsense reasoning)とは、フレーズ、行動、出来事の典型的な時間的文脈を理解する能力である。
大規模言語モデルの性能に関する最近の研究は、しばしば推論においてショートカットを行い、単純な言語トラップに陥ることが示唆されている。
論文 参考訳(メタデータ) (2023-07-28T01:30:15Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
大きな言語モデル(LLM)は、時間的推論に関わる際に課題に直面します。
本研究では,時間的質問応答タスクに特化して設計された新しいフレームワークであるTempLogicを提案する。
論文 参考訳(メタデータ) (2023-05-24T10:57:53Z) - Causal Inference Principles for Reasoning about Commonsense Causality [93.19149325083968]
コモンセンス因果推論(Commonsense causality reasoning)は、平均的な人によって妥当と見なされる自然言語記述における妥当な原因と影響を特定することを目的としている。
既存の作業は通常、深い言語モデルに全面的に依存しており、共起を混同する可能性がある。
古典的因果原理に触発され,我々はCCRの中心的問題を明確にし,観察研究と自然言語における人間の対象間の類似性を引き出す。
本稿では,時間信号をインシデント・インシデント・インシデント・インシデント・インシデントとして活用する新しいフレームワークであるROCKをReason O(A)bout Commonsense K(C)ausalityに提案する。
論文 参考訳(メタデータ) (2022-01-31T06:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。