論文の概要: Machine learning and high dimensional vector search
- arxiv url: http://arxiv.org/abs/2502.16931v1
- Date: Mon, 24 Feb 2025 07:49:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:53:09.155790
- Title: Machine learning and high dimensional vector search
- Title(参考訳): 機械学習と高次元ベクトル探索
- Authors: Matthijs Douze,
- Abstract要約: 機械学習とベクトル探索は、並列に開発された2つの研究トピックである。
ビッグデータに関連する他の多くの分野とは異なり、機械学習はベクトル探索に大きな影響を与えていない。
- 参考スコア(独自算出の注目度): 13.190595786258545
- License:
- Abstract: Machine learning and vector search are two research topics that developed in parallel in nearby communities. However, unlike many other fields related to big data, machine learning has not significantly impacted vector search. In this opinion paper we attempt to explain this oddity. Along the way, we wander over the numerous bridges between the two fields.
- Abstract(参考訳): 機械学習とベクトル探索は、近隣のコミュニティで並列に開発された2つの研究トピックである。
しかし、ビッグデータに関連する他の多くの分野とは異なり、機械学習はベクトル探索に大きな影響を与えていない。
この意見書では、この奇妙なことを説明しようと試みる。
途中で、私たちは2つのフィールドの間の多数の橋をさまよいます。
関連論文リスト
- LeanVec: Searching vectors faster by making them fit [1.0863382547662974]
本稿では,高次元ベクトル上での類似性探索を高速化するために,線形次元減少とベクトル量子化を組み合わせたフレームワークLeanVecを提案する。
LeanVecは、検索のスループットを最大3.7倍改善し、インデックスビルド時間を最大4.9倍高速化する、最先端の結果を生成する。
論文 参考訳(メタデータ) (2023-12-26T21:14:59Z) - EMBERSim: A Large-Scale Databank for Boosting Similarity Search in
Malware Analysis [48.5877840394508]
近年,定量化によるマルウェア検出から機械学習への移行が進んでいる。
本稿では、EMBERから始まるバイナリファイルの類似性研究の領域における欠陥に対処することを提案する。
我々は、EMBERに類似情報とマルウェアのクラスタグを付与し、類似性空間のさらなる研究を可能にする。
論文 参考訳(メタデータ) (2023-10-03T06:58:45Z) - BridgeData V2: A Dataset for Robot Learning at Scale [73.86688388408021]
BridgeData V2は、ロボット操作行動の大規模で多様なデータセットである。
対象は、24の環境にまたがる60,096個のトラジェクトリだ。
論文 参考訳(メタデータ) (2023-08-24T17:41:20Z) - A Survey From Distributed Machine Learning to Distributed Deep Learning [0.356008609689971]
データとアルゴリズムを複数のマシンに分散する分散機械学習が提案されている。
これらのアルゴリズムを分類とクラスタリング(従来の機械学習)、深層学習、深層強化学習グループに分割する。
上記のアルゴリズムの調査に基づいて、今後の研究で対処すべき限界を強調した。
論文 参考訳(メタデータ) (2023-07-11T13:06:42Z) - Navigating causal deep learning [78.572170629379]
因果ディープラーニング(Causal Deep Learning, CDL)は、機械学習の大きな分野において、新しく重要な研究分野である。
本稿では、パールの因果関係のはしごを越えて、因果関係の深層学習の手法を分類する。
私たちのパラダイムは、研究者がベンチマークを見つけ、メソッドを比較し、そして最も重要なのは、研究のギャップを識別するのを助けるツールです。
論文 参考訳(メタデータ) (2022-12-01T23:44:23Z) - Demystifying Map Space Exploration for NPUs [4.817475305740601]
Map Space Explorationは、Deep Neural Network(DNN)モデルの最適化されたマッピングを見つける問題である。
我々は、異なるマッパーが活用する検索技術について、第一級のリンゴとアプリの比較を行う。
次に,既存のマッパーを拡張できる2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-07T17:58:45Z) - Researching Alignment Research: Unsupervised Analysis [14.699455652461726]
AIアライメント研究は、人工知能(AI)が人間に利益をもたらすことを保証することを目的としている。
このプロジェクトでは、既存のAIアライメント研究を収集、分析した。
フィールドは急速に成長しており、いくつかのサブフィールドが平行して出現している。
論文 参考訳(メタデータ) (2022-06-06T18:24:17Z) - An Extension to Basis-Hypervectors for Learning from Circular Data in
Hyperdimensional Computing [62.997667081978825]
超次元計算(Hyperdimensional Computing、HDC)は、高次元ランダム空間の性質に基づく計算フレームワークである。
本稿では, 基本超ベクトル集合について検討し, 一般にHDCへの実践的貢献につながっている。
本稿では,HDCを用いた機械学習において,これまでに扱ったことのない重要な情報である円形データから学習する手法を提案する。
論文 参考訳(メタデータ) (2022-05-16T18:04:55Z) - Expressivity of Parameterized and Data-driven Representations in Quality
Diversity Search [111.06379262544911]
2つの異なる検索空間で実施した品質多様性進化探索の出力多様性を比較する。
学習モデルは、未知の例への外挿や拡大よりも、既知のデータポイント間の補間が優れている。
論文 参考訳(メタデータ) (2021-05-10T10:27:43Z) - SOLAR: Sparse Orthogonal Learned and Random Embeddings [45.920844071257754]
我々は,高次元および超スパース埋め込みが,クエリ効率と精度の両面において,高密度な低次元埋め込みよりもはるかに優れていると論じている。
我々は,最大3つの公開データセット上で1.6万冊の書籍を検索し,複数ラベルの分類を行うタスクに対して,500K次元のSOLAR埋め込みを訓練する。
それぞれのタスクに対して,最大10倍の高速さで,各タスクの最先端のベースラインと比較して,精度とリコールの精度が向上する。
論文 参考訳(メタデータ) (2020-08-30T17:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。