論文の概要: Researching Alignment Research: Unsupervised Analysis
- arxiv url: http://arxiv.org/abs/2206.02841v1
- Date: Mon, 6 Jun 2022 18:24:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-08 15:33:58.581196
- Title: Researching Alignment Research: Unsupervised Analysis
- Title(参考訳): 配向研究研究:教師なし分析
- Authors: Jan H. Kirchner, Logan Smith, Jacques Thibodeau, Kyle McDonell, Laria
Reynolds
- Abstract要約: AIアライメント研究は、人工知能(AI)が人間に利益をもたらすことを保証することを目的としている。
このプロジェクトでは、既存のAIアライメント研究を収集、分析した。
フィールドは急速に成長しており、いくつかのサブフィールドが平行して出現している。
- 参考スコア(独自算出の注目度): 14.699455652461726
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI alignment research is the field of study dedicated to ensuring that
artificial intelligence (AI) benefits humans. As machine intelligence gets more
advanced, this research is becoming increasingly important. Researchers in the
field share ideas across different media to speed up the exchange of
information. However, this focus on speed means that the research landscape is
opaque, making it difficult for young researchers to enter the field. In this
project, we collected and analyzed existing AI alignment research. We found
that the field is growing quickly, with several subfields emerging in parallel.
We looked at the subfields and identified the prominent researchers, recurring
topics, and different modes of communication in each. Furthermore, we found
that a classifier trained on AI alignment research articles can detect relevant
articles that we did not originally include in the dataset. We are sharing the
dataset with the research community and hope to develop tools in the future
that will help both established researchers and young researchers get more
involved in the field.
- Abstract(参考訳): AIアライメント研究は、人工知能(AI)が人間に利益をもたらすことを保証する研究分野である。
マシンインテリジェンスが進歩するにつれ、この研究はますます重要になりつつある。
フィールドの研究者たちは、情報の交換をスピードアップするために、さまざまなメディアでアイデアを共有している。
しかし、このスピードにフォーカスすることは、研究現場が不透明であることを意味するため、若い研究者がこの分野に入るのが困難である。
このプロジェクトでは、既存のAIアライメント研究を収集、分析した。
フィールドは急速に成長しており、いくつかのサブフィールドが平行して出現している。
我々は,各サブフィールドを調べた結果,著名な研究者,繰り返し話題,コミュニケーションのさまざまなモードが同定された。
さらに,aiアライメント研究の論文を学習した分類器は,当初データセットに含まれなかった関連記事を検出することが可能であることが判明した。
私たちはこのデータセットを研究コミュニティと共有し、確立された研究者と若い研究者の両方がこの分野に参加するのに役立つツールの開発を望んでいる。
関連論文リスト
- A Survey Forest Diagram : Gain a Divergent Insight View on a Specific Research Topic [2.699900017799093]
情報検索や質問応答におけるジェネレーティブAIの利用は,研究調査の実施に人気がある。
本研究は,本研究を対象とする未成年研究者を対象とした詳細な調査林図を作成することを目的としている。
論文 参考訳(メタデータ) (2024-07-24T08:17:37Z) - Research information in the light of artificial intelligence: quality and data ecologies [0.0]
本稿では,研究情報に適したAI技術を見つけるための多分野間アプローチを提案する。
RIM(Professional Research Information Management)は、研究者にとってデータ駆動型ツールとしてますます重要になりつつある。
論文 参考訳(メタデータ) (2024-05-06T16:07:56Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
近年、CHIコミュニティは人間中心のレスポンシブル人工知能の研究において著しい成長を遂げている。
この研究はすべて、人権と倫理に根ざしたまま、人類に利益をもたらすAIを開発し、AIの潜在的な害を減らすことを目的としている。
本研究グループでは,これらのトピックに関心のある学術・産業の研究者を集結させ,現在の研究動向と今後の研究動向を地図化することを目的とする。
論文 参考訳(メタデータ) (2023-02-16T08:59:42Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Characterising Research Areas in the field of AI [68.8204255655161]
トピックの共起ネットワーク上でクラスタリング分析を行うことで,主要な概念テーマを特定した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを浮き彫りにしている。
論文 参考訳(メタデータ) (2022-05-26T16:30:30Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - Learnings from Frontier Development Lab and SpaceML -- AI Accelerators
for NASA and ESA [57.06643156253045]
AIとML技術による研究は、しばしば非同期の目標とタイムラインを備えたさまざまな設定で動作します。
我々は、NASAとESAの民間パートナーシップの下で、AIアクセラレータであるFrontier Development Lab(FDL)のケーススタディを実行する。
FDL研究は、AI研究の責任ある開発、実行、普及に基礎を置く原則的な実践に従う。
論文 参考訳(メタデータ) (2020-11-09T21:23:03Z) - Topic Diffusion Discovery Based on Deep Non-negative Autoencoder [0.0]
本稿では,話題拡散の監視に情報分散計測を用いたディープ非負のオートエンコーダを提案する。
提案手法は,研究トピックの進化と,オンライン手法による話題拡散の発見を可能にする。
論文 参考訳(メタデータ) (2020-10-08T00:58:10Z) - A narrowing of AI research? [0.0]
学術と民間におけるAI研究のテーマ的多様性の進化について研究する。
我々は、AI研究における民間企業の影響力を、彼らが受け取った引用と他の機関とのコラボレーションを通じて測定する。
論文 参考訳(メタデータ) (2020-09-22T08:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。