論文の概要: Active Learning for Conditional Inverse Design with Crystal Generation and Foundation Atomic Models
- arxiv url: http://arxiv.org/abs/2502.16984v1
- Date: Mon, 24 Feb 2025 09:15:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:01.223622
- Title: Active Learning for Conditional Inverse Design with Crystal Generation and Foundation Atomic Models
- Title(参考訳): 結晶生成と基礎原子モデルを用いた条件付き逆設計のためのアクティブラーニング
- Authors: Zhuoyuan Li, Siyu Liu, Beilin Ye, David J. Srolovitz, Tongqi Wen,
- Abstract要約: 本稿では, 結晶生成モデルと基本原子モデルを組み合わせて, 逆設計の精度と効率を高めるための能動的学習フレームワークを提案する。
我々のフレームワークは、様々な結晶生成と基盤原子モデルに対応し、AI駆動材料発見のためのスケーラブルなアプローチを確立している。
- 参考スコア(独自算出の注目度): 2.8408587358426725
- License:
- Abstract: Artificial intelligence (AI) is transforming materials science, enabling both theoretical advancements and accelerated materials discovery. Recent progress in crystal generation models, which design crystal structures for targeted properties, and foundation atomic models (FAMs), which capture interatomic interactions across the periodic table, has significantly improved inverse materials design. However, an efficient integration of these two approaches remains an open challenge. Here, we present an active learning framework that combines crystal generation models and foundation atomic models to enhance the accuracy and efficiency of inverse design. As a case study, we employ Con-CDVAE to generate candidate crystal structures and MACE-MP-0 FAM as one of the high-throughput screeners for bulk modulus evaluation. Through iterative active learning, we demonstrate that Con-CDVAE progressively improves its accuracy in generating crystals with target properties, highlighting the effectiveness of a property-driven fine-tuning process. Our framework is general to accommodate different crystal generation and foundation atomic models, and establishes a scalable approach for AI-driven materials discovery. By bridging generative modeling with atomic-scale simulations, this work paves the way for more accurate and efficient inverse materials design.
- Abstract(参考訳): 人工知能(AI)は、物質科学を変革し、理論的進歩と物質発見の加速の両方を可能にしている。
近年, 結晶構造を設計する結晶生成モデルや, 周期表間の原子間相互作用を捉える基礎原子モデル(FAM)の進歩により, 逆材料設計が大幅に改善されている。
しかし、これらの2つのアプローチの効率的な統合は依然としてオープンな課題である。
本稿では,結晶生成モデルと基本原子モデルを組み合わせて,逆設計の精度と効率を高めるための能動的学習フレームワークを提案する。
ケーススタディでは、候補結晶構造を生成するためにCon-CDVAEと、バルク率評価のための高スループットスクリーニングの1つとしてMACE-MP-0 FAMを用いる。
反復的能動的学習により,Con-CDVAEは目標特性を持つ結晶生成における精度を段階的に向上し,特性駆動微調整プロセスの有効性を浮き彫りにした。
我々のフレームワークは、様々な結晶生成と基盤原子モデルに対応し、AI駆動材料発見のためのスケーラブルなアプローチを確立している。
生成モデリングを原子スケールのシミュレーションでブリッジすることで、より正確で効率的な逆材料設計の道を開くことができる。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Generative Inverse Design of Crystal Structures via Diffusion Models with Transformers [1.2289361708127877]
有望な性質を持つ新しい無機材料は、科学的にも工業的にも重要な課題である。
有望な性質を持つ新しい無機材料の発見は、科学的にも工業的にも重要な課題である。
そこで本研究では,トランスフォーマーアーキテクチャに基づくバックボーンを用いた,結晶構造の生成的逆設計のための新しいタイプの拡散モデルについて検討する。
論文 参考訳(メタデータ) (2024-06-13T16:03:15Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
結晶構造から材料の物性を予測することは、材料科学の基本的な問題である。
結晶構造が無限に繰り返し、原子の周期的な配列であり、完全に連結された注意が無限に連結された注意をもたらすことを示す。
本稿では, 結晶構造に対する簡単なトランスフォーマーベースエンコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-18T11:37:42Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
計算化学において、結晶構造予測は最適化問題である。
この問題に対処する1つのアプローチは、密度汎関数理論(DFT)に基づいてシミュレータを構築し、続いてシミュレーションで探索を実行することである。
我々は,LCOM(最近の保守的客観モデル)と呼ばれる我々の手法が,構造予測の成功率の観点から,最も優れたアプローチと同等に機能することを示す。
論文 参考訳(メタデータ) (2023-10-16T04:35:44Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
本研究は, 化学安定性や化学組成など, 新しい結晶構造を創出することを目的としている。
提案手法の新規性は、結晶細胞の格子が固定されていないという事実にある。
対称性の制約を尊重し、計算上の優位性をもたらす多グラフ結晶表現が導入された。
論文 参考訳(メタデータ) (2023-10-16T02:53:24Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
本稿では,結晶構造の生成モデルであるCrystal-GFNを紹介する。
本稿では,MatBenchで学習した新しいプロキシ機械学習モデルにより予測された結晶構造の原子1個あたりの生成エネルギーを目的として利用する。
その結果、Crystal-GFNは低(中間-3.1 eV/原子)で生成エネルギーが予測される非常に多様な結晶をサンプリングできることが示された。
論文 参考訳(メタデータ) (2023-10-07T21:36:55Z) - Equivariant Parameter Sharing for Porous Crystalline Materials [4.271235935891555]
既存の結晶特性予測法は、制限的すぎる制約を持つか、単位細胞間で対称性を組み込むのみである。
我々は、結晶の単位セルの対称性をアーキテクチャに組み込んだモデルを開発し、多孔質構造を明示的にモデル化する。
提案手法は, 既存の結晶特性予測法よりも優れた性能を示し, 対称性の包含によりより効率的なモデルが得られることを確認した。
論文 参考訳(メタデータ) (2023-04-04T08:33:13Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。