論文の概要: Predicting Liquidity-Aware Bond Yields using Causal GANs and Deep Reinforcement Learning with LLM Evaluation
- arxiv url: http://arxiv.org/abs/2502.17011v1
- Date: Mon, 24 Feb 2025 09:46:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:55:58.615089
- Title: Predicting Liquidity-Aware Bond Yields using Causal GANs and Deep Reinforcement Learning with LLM Evaluation
- Title(参考訳): 因果GANを用いた流動性を考慮したボンド収量予測とLLM評価による深部強化学習
- Authors: Jaskaran Singh Walia, Aarush Sinha, Srinitish Srinivasan, Srihari Unnikrishnan,
- Abstract要約: 我々は4つの主要結合カテゴリ(AAA、BAA、US10Y)の高忠実な合成結合収率データを生成する。
我々は、取引信号、リスク評価、ボラティリティ予測を生成する微調整されたLarge Language Model (LLM) Qwen2.5-7Bを採用している。
強化学習による合成データ生成は、平均絶対誤差が0.103に達し、実世界の債券市場のダイナミクスを複製する効果を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Financial bond yield forecasting is challenging due to data scarcity, nonlinear macroeconomic dependencies, and evolving market conditions. In this paper, we propose a novel framework that leverages Causal Generative Adversarial Networks (CausalGANs) and Soft Actor-Critic (SAC) reinforcement learning (RL) to generate high-fidelity synthetic bond yield data for four major bond categories (AAA, BAA, US10Y, Junk). By incorporating 12 key macroeconomic variables, we ensure statistical fidelity by preserving essential market properties. To transform this market dependent synthetic data into actionable insights, we employ a finetuned Large Language Model (LLM) Qwen2.5-7B that generates trading signals (BUY/HOLD/SELL), risk assessments, and volatility projections. We use automated, human and LLM evaluations, all of which demonstrate that our framework improves forecasting performance over existing methods, with statistical validation via predictive accuracy, MAE evaluation(0.103%), profit/loss evaluation (60% profit rate), LLM evaluation (3.37/5) and expert assessments scoring 4.67 out of 5. The reinforcement learning-enhanced synthetic data generation achieves the least Mean Absolute Error of 0.103, demonstrating its effectiveness in replicating real-world bond market dynamics. We not only enhance data-driven trading strategies but also provides a scalable, high-fidelity synthetic financial data pipeline for risk & volatility management and investment decision-making. This work establishes a bridge between synthetic data generation, LLM driven financial forecasting, and language model evaluation, contributing to AI-driven financial decision-making.
- Abstract(参考訳): 金融債券利回り予測は、データ不足、非線形マクロ経済依存、市場状況の進展などにより困難である。
本稿では,Causal Generative Adversarial Networks(CausalGANs)とSoft Actor-Critic(SAC)強化学習(RL)を利用して,4つの主要結合カテゴリ(AAA,BAA,US10Y,Junk)の高忠実性合成結合収率データを生成する新しいフレームワークを提案する。
12つの主要なマクロ経済変数を組み込むことで、本質的な市場特性を保ち、統計的忠実度を確保する。
この市場依存型合成データを実用的な洞察に変換するために、我々は、取引信号(BUY/HOLD/SELL)、リスク評価、ボラティリティ予測を生成する微調整されたLarge Language Model (LLM) Qwen2.5-7Bを採用している。
我々は,自動評価,人的評価,LDM評価を用いて,予測精度による統計的検証,MAE評価(0.103%),利益/損失評価(60%利益率),LSM評価(3.37/5),専門家評価(5。
強化学習による合成データ生成は、平均絶対誤差が0.103に達し、実世界の債券市場のダイナミクスを複製する効果を実証する。
データ駆動型トレーディング戦略の強化だけでなく、リスクとボラティリティの管理と投資決定のためのスケーラブルで高忠実な合成金融データパイプラインも提供しています。
この研究は、合成データ生成、LLMによる財務予測、言語モデル評価の橋渡しを確立し、AIによる財務決定に寄与する。
関連論文リスト
- Towards Fully Exploiting LLM Internal States to Enhance Knowledge Boundary Perception [58.62352010928591]
大きな言語モデル(LLM)は様々なタスクにまたがって優れたパフォーマンスを示すが、しばしば知識境界を正確に測定するのに苦労する。
本稿では,LLMの内部状態を有効利用して,効率性やリスクの観点から知識境界に対する認識を高める方法について検討する。
論文 参考訳(メタデータ) (2025-02-17T11:11:09Z) - Forecasting S&P 500 Using LSTM Models [0.0]
本報告では,S&P500指数の予測におけるARIMAモデルとLSTMモデルの比較を行った。
平均絶対誤差(MAE)とルート平均正方形誤差(RMSE)を用いてこれらのモデルを評価する。
LSTMモデルはシーケンシャルな処理能力を利用して、369.32のMAE、412.84のRMSE、92.6%の精度でARIMAを上回った。
論文 参考訳(メタデータ) (2025-01-29T01:31:56Z) - The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
大きな言語モデル(LLM)は、安全のための有害な要求を拒否することと、ユーティリティのための正当な要求を収容することのバランスをとる必要がある。
本稿では,DPO(Direct Preference Optimization)に基づくアライメントフレームワークを提案する。
得られたモデルLibraChemは,Claude-3,GPT-4o,LLaMA-3などのLLMをそれぞれ13.44%,7.16%,7.10%で上回った。
論文 参考訳(メタデータ) (2025-01-20T06:35:01Z) - Innovative Sentiment Analysis and Prediction of Stock Price Using FinBERT, GPT-4 and Logistic Regression: A Data-Driven Approach [0.0]
本研究では、感情分析と株価指数予測のための最先端AIモデル、すなわちTranssformers (FinBERT)、Generatice Pre-trained Transformer GPT-4、Logistic Regressionの比較パフォーマンスについて検討する。
GPT-4やFinBERTといった高度な自然言語処理モデルと従来の機械学習モデルであるロジスティック回帰を活用することで、市場の感情を分類し、感情スコアを生成し、市場価格の動きを予測することを目指している。
論文 参考訳(メタデータ) (2024-12-07T05:20:31Z) - Evaluating Language Models as Synthetic Data Generators [74.80905172696366]
AgoraBenchは、LMのデータ生成能力を評価するための標準化された設定とメトリクスを提供するベンチマークである。
6つのLMを使って126万のトレーニングインスタンスを合成し、99の学生モデルをトレーニングすることで、LMのデータ生成能力に関する重要な洞察を明らかにする。
論文 参考訳(メタデータ) (2024-12-04T19:20:32Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - IMFL-AIGC: Incentive Mechanism Design for Federated Learning Empowered by Artificial Intelligence Generated Content [15.620004060097155]
フェデレートラーニング(FL)は、クライアントがローカルデータをアップロードすることなく、共有グローバルモデルを協調的にトレーニングできる、有望なパラダイムとして登場した。
顧客参加を促すため,データ品質を考慮したインセンティブ機構を提案する。
提案したメカニズムは,トレーニングの精度が高く,実世界のデータセットによるサーバコストの最大53.34%を削減できる。
論文 参考訳(メタデータ) (2024-06-12T07:47:22Z) - Can Large Language Models Beat Wall Street? Unveiling the Potential of AI in Stock Selection [0.07499722271664146]
本稿では,GPT-4による金融市場における株式選択の先進的推論を活用する革新的なフレームワークであるMarketSenseAIを紹介する。
MarketSenseAIは、市場動向、ニュース、基礎、マクロ経済要因などさまざまなデータソースを分析し、専門家の投資決定をエミュレートする。
本研究は,金融意思決定における大規模言語モデルの変容の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-01-08T08:58:46Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。