Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning
- URL: http://arxiv.org/abs/2410.02963v1
- Date: Wed, 18 Sep 2024 04:57:48 GMT
- Title: Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning
- Authors: Shouthiri Partheepan, Farzad Sanati, Jahan Hassan,
- Abstract summary: This study presents an in-depth analysis of bushfire severity in Australia over the last twelve years.
By utilizing Landsat imagery and integrating spectral indices like NDVI, NBR, and Burn Index, along with topographical and climatic factors, we developed a robust predictive model.
The model achieved high accuracy, 86.13%, demonstrating its effectiveness in predicting fire severity across diverse Australian ecosystems.
- Score: 0.43012765978447565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bushfire is one of the major natural disasters that cause huge losses to livelihoods and the environment. Understanding and analyzing the severity of bushfires is crucial for effective management and mitigation strategies, helping to prevent the extensive damage and loss caused by these natural disasters. This study presents an in-depth analysis of bushfire severity in Australia over the last twelve years, combining remote sensing data and machine learning techniques to predict future fire trends. By utilizing Landsat imagery and integrating spectral indices like NDVI, NBR, and Burn Index, along with topographical and climatic factors, we developed a robust predictive model using XGBoost. The model achieved high accuracy, 86.13%, demonstrating its effectiveness in predicting fire severity across diverse Australian ecosystems. By analyzing historical trends and integrating factors such as population density and vegetation cover, we identify areas at high risk of future severe bushfires. Additionally, this research identifies key regions at risk, providing data-driven recommendations for targeted firefighting efforts. The findings contribute valuable insights into fire management strategies, enhancing resilience to future fire events in Australia. Also, we propose future work on developing a UAV-based swarm coordination model to enhance fire prediction in real-time and firefighting capabilities in the most vulnerable regions.
Related papers
- A Synergistic Approach to Wildfire Prevention and Management Using AI, ML, and 5G Technology in the United States [44.99833362998488]
This research investigates proactive methods for detecting and handling wildfires in the United States.
The specific objective of this research covers proactive detection and prevention of wildfires using advanced technology.
Various methods, such as AI-enabled remote sensing and 5G-based active monitoring, can enhance proactive wildfire detection and management.
arXiv Detail & Related papers (2024-02-27T04:09:30Z) - Reinforcement Learning for Wildfire Mitigation in Simulated Disaster
Environments [39.014859667729375]
Wildfires pose a threat to life, property, ecology, cultural heritage, and critical infrastructure.
SimFire is a versatile wildland fire projection simulator designed to generate realistic wildfire scenarios.
SimHarness is a modular agent-based machine learning wrapper capable of automatically generating land management strategies.
arXiv Detail & Related papers (2023-11-27T15:37:05Z) - Modelling wildland fire burn severity in California using a spatial
Super Learner approach [0.04188114563181614]
Given the increasing prevalence of wildland fires in the Western US, there is a critical need to develop tools to understand and accurately predict burn severity.
We develop a machine learning model to predict post-fire burn severity using pre-fire remotely sensed data.
When implemented, this model has the potential to the loss of human life, property, resources, and ecosystems in California.
arXiv Detail & Related papers (2023-11-25T22:09:14Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Deep graphical regression for jointly moderate and extreme Australian
wildfires [0.7864304771129751]
Recent wildfires in Australia have led to considerable economic loss and property destruction.
There is increasing concern that climate change may exacerbate their intensity, duration, and frequency.
It is imperative to develop robust statistical methods to reliably model the full distribution of wildfire spread.
arXiv Detail & Related papers (2023-08-28T13:04:52Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Deep Learning for Global Wildfire Forecasting [1.6929753878977016]
We create a global fire dataset and demonstrate a prototype for predicting the presence of global burned areas on a sub-seasonal scale.
We present an open-access global analysis-ready datacube, which contains a variety of variables related to the seasonal and sub-seasonal fire drivers.
We train a deep learning model, which treats global wildfire forecasting as an image segmentation task and skillfully predicts the presence of burned areas 8, 16, 32 and 64 days ahead of time.
arXiv Detail & Related papers (2022-11-01T15:39:01Z) - Assimilation of Satellite Active Fires Data [0.0]
The aim of this thesis is to develop techniques to help combat the impacts of wildfires by improving wildfire modeling capabilities.
In particular, we develop a method for constructing the history of a fire, a new technique for assimilating wildfire data, and a method for modifying the behavior of a modeled fire.
arXiv Detail & Related papers (2022-04-01T20:11:28Z) - Mitigating Greenhouse Gas Emissions Through Generative Adversarial
Networks Based Wildfire Prediction [11.484140660635239]
We develop a deep learning based data augmentation approach for wildfire risk prediction.
By adopting the proposed method, we can take preventive strategies of wildfire mitigation to reduce global GHG emissions.
arXiv Detail & Related papers (2021-08-20T00:36:30Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.