LCV2I: Communication-Efficient and High-Performance Collaborative Perception Framework with Low-Resolution LiDAR
- URL: http://arxiv.org/abs/2502.17039v2
- Date: Wed, 05 Mar 2025 02:33:16 GMT
- Title: LCV2I: Communication-Efficient and High-Performance Collaborative Perception Framework with Low-Resolution LiDAR
- Authors: Xinxin Feng, Haoran Sun, Haifeng Zheng,
- Abstract summary: Vehicle-to-Infrastructure (V2I) collaborative perception leverages data collected by infrastructure's sensors to enhance vehicle perceptual capabilities.<n>Lidar as a commonly used sensor in cooperative perception, is widely equipped in intelligent vehicles and infrastructure.<n>To achieve low-cost V2I, reducing the cost of LiDAR is crucial.
- Score: 19.748419057261106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle-to-Infrastructure (V2I) collaborative perception leverages data collected by infrastructure's sensors to enhance vehicle perceptual capabilities. LiDAR, as a commonly used sensor in cooperative perception, is widely equipped in intelligent vehicles and infrastructure. However, its superior performance comes with a correspondingly high cost. To achieve low-cost V2I, reducing the cost of LiDAR is crucial. Therefore, we study adopting low-resolution LiDAR on the vehicle to minimize cost as much as possible. However, simply reducing the resolution of vehicle's LiDAR results in sparse point clouds, making distant small objects even more blurred. Additionally, traditional communication methods have relatively low bandwidth utilization efficiency. These factors pose challenges for us. To balance cost and perceptual accuracy, we propose a new collaborative perception framework, namely LCV2I. LCV2I uses data collected from cameras and low-resolution LiDAR as input. It also employs feature offset correction modules and regional feature enhancement algorithms to improve feature representation. Finally, we use regional difference map and regional score map to assess the value of collaboration content, thereby improving communication bandwidth efficiency. In summary, our approach achieves high perceptual performance while substantially reducing the demand for high-resolution sensors on the vehicle. To evaluate this algorithm, we conduct 3D object detection in the real-world scenario of DAIR-V2X, demonstrating that the performance of LCV2I consistently surpasses currently existing algorithms.
Related papers
- FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation [52.89847760590189]
3D scene understanding is a critical yet challenging task in autonomous driving.<n>Recent methods leverage the range-view representation to improve processing efficiency.<n>We re-design the workflow for range-view-based LiDAR semantic segmentation.
arXiv Detail & Related papers (2025-02-13T12:39:26Z) - Deep Reinforcement Learning-Based User Scheduling for Collaborative Perception [24.300126250046894]
Collaborative perception is envisioned to improve perceptual accuracy by using vehicle-to-everything (V2X) communication.<n>Due to limited communication resources, it is impractical for all units to transmit sensing data such as point clouds or high-definition video.<n>We propose a deep reinforcement learning-based V2X user scheduling algorithm for collaborative perception.
arXiv Detail & Related papers (2025-02-12T04:45:00Z) - LiDAR-based End-to-end Temporal Perception for Vehicle-Infrastructure Cooperation [16.465037559349323]
We introduce LET-VIC, a LiDAR-based End-to-End Tracking framework for Vehicle-Temporal Cooperation (VIC)
LET-VIC leverages Vehicle-to-Everything (V2X) communication to enhance temporal perception by fusing spatial and temporal data from both vehicle and infrastructure sensors.
Experiments on the V2X-Seq-SPD dataset demonstrate that LET-VIC significantly outperforms baseline models, achieving at least a 13.7% improvement in mAP and a 13.1% improvement in AMOTA without considering communication delays.
arXiv Detail & Related papers (2024-11-22T13:34:29Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
We introduce LaserMix++, a framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to assist data-efficient learning.<n>Results demonstrate that LaserMix++ outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations.<n>This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
arXiv Detail & Related papers (2024-05-08T17:59:53Z) - NLOS Dies Twice: Challenges and Solutions of V2X for Cooperative
Perception [7.819255257787961]
We introduce an abstract perception matrix matching method for quick sensor fusion matching procedures and mobility-height hybrid relay determination procedures.
To demonstrate the effectiveness of our solution, we design a new simulation framework to consider autonomous driving, sensor fusion and V2X communication in general.
arXiv Detail & Related papers (2023-07-13T08:33:02Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
Vision transformers (ViTs) are changing the landscape of object detection approaches.
We propose a decoder-free fully transformer-based (DFFT) object detector.
DFFT_SMALL achieves high efficiency in both training and inference stages.
arXiv Detail & Related papers (2022-06-14T13:22:19Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - 3D Vehicle Detection Using Camera and Low-Resolution LiDAR [6.293059137498174]
We propose a novel framework for 3D object detection in Bird-Eye View (BEV) using a low-resolution LiDAR and a monocular camera.
Taking the low-resolution LiDAR point cloud and the monocular image as input, our depth completion network is able to produce dense point cloud.
For both easy and moderate cases, our detection results are comparable to those from 64-line high-resolution LiDAR.
arXiv Detail & Related papers (2021-05-04T21:08:20Z) - Improving Perception via Sensor Placement: Designing Multi-LiDAR Systems
for Autonomous Vehicles [16.45799795374353]
We propose an easy-to-compute information-theoretic surrogate cost metric based on Probabilistic Occupancy Grids (POG) to optimize LiDAR placement for maximal sensing.
Our results confirm that sensor placement is an important factor in 3D point cloud-based object detection and could lead to a variation of performance by 10% 20% on the state-of-the-art perception algorithms.
arXiv Detail & Related papers (2021-05-02T01:52:18Z) - A Unified Light Framework for Real-time Fault Detection of Freight Train
Images [16.721758280029302]
Real-time fault detection for freight trains plays a vital role in guaranteeing the security and optimal operation of railway transportation.
Despite the promising results for deep learning based approaches, the performance of these fault detectors on freight train images are far from satisfactory in both accuracy and efficiency.
This paper proposes a unified light framework to improve detection accuracy while supporting a real-time operation with a low resource requirement.
arXiv Detail & Related papers (2021-01-31T05:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.