An experimental platform for levitated mechanics in space
- URL: http://arxiv.org/abs/2502.17108v3
- Date: Mon, 10 Mar 2025 10:32:01 GMT
- Title: An experimental platform for levitated mechanics in space
- Authors: Jack Homans, Elliot Simcox, Jakub Wardak, Laura da Palma Barbara, Tim M. Fuchs, Rafael Muffato, Florence Concepcion, Andrei Dragomir, Christian Vogt, Peter Nisbet-Jones, Christopher Bridges, Hendrik Ulbricht,
- Abstract summary: This paper describes the development of a technology demonstrator for optical and magnetic trapping experiments in space.<n>Our payload represents the first concrete step towards future missions with aims of probing fundamental physical questions.
- Score: 0.6959336820154619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conducting levitated mechanical experiments in extreme conditions has long been the aim of researchers, as it allows for the investigation of new fundamental physics phenomena. One of the great frontiers has been sending these experiments into the micro-g environment of space, with multiple proposals calling for such a platform. At the same time, levitated sensors have demonstrated a high sensitivity to external stimuli which will only improve in low-vibrational conditions. conditions This paper describes the development of a technology demonstrator for optical and magnetic trapping experiments in space. Our payload represents the first concrete step towards future missions with aims of probing fundamental physical questions: matter-wave interferometry of nanoparticles to probe the limits of macroscopic quantum mechanics, detection of Dark Matter candidates and gravitational waves to test physics beyond the Standard Model, and accelerometry for Earth-observation.
Related papers
- The path towards measuring the gravitational field of proton bunches at accelerators [0.6530047924748278]
The intense ultra-relativistic proton beam in the LHC storage ring offers the potential to test general relativity.
The present document summarizes the status of the theoretical studies in this direction.
arXiv Detail & Related papers (2025-04-15T07:45:35Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Optomechanics of optically-levitated particles: A tutorial and perspective [0.0]
Light has been used to cool and demonstrate quantum control over the mechanical degrees of freedom of individual ions and atoms.
Optical levitation, where an object can be suspended by radiation pressure and largely decoupled from its environment, has recently established itself as a rich field of study.
This article provides a survey of several current activities in field along with a tutorial describing associated key concepts and methods.
arXiv Detail & Related papers (2023-07-21T18:58:25Z) - Probing multi-mobility edges in quasiperiodic mosaic lattices [36.63101591801625]
The mobility edge (ME) is a crucial concept in understanding localization physics.
Here, we provide experimental evidence to address the possibility of a single system exhibiting multiple MEs.
By single site injection and scanning the disorder level, we could approximately probe the ME of the modulated lattice.
arXiv Detail & Related papers (2023-06-19T10:21:33Z) - Quantum Science and the Search for Axion Dark Matter [91.3755431537592]
The dark matter puzzle is one of the most important open problems in modern physics.
Numerous precision experiments are searching for the three non-gravitational interactions of axion-like dark matter.
arXiv Detail & Related papers (2023-04-24T02:52:56Z) - Exploring the limits of ultracold atoms in space [0.0]
Existing space-based cold atom experiments have demonstrated the utility of microgravity for improvements in observation times.
The tantalizing possibility that such experiments may one day be able to probe physics of quantum objects with masses approaching the Plank mass is discussed.
arXiv Detail & Related papers (2023-02-22T18:40:39Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum Gravitational Sensor for Space Debris [0.0]
We will establish a three dimensional model to describe the gravity gradient signal from an external moving object.
We will then theoretically investigate the sensitivities using the matter-wave interferometer based on the Stern-Gerlach set-up.
We will consider objects near Earth-based experiments and space debris in proximity of satellites.
arXiv Detail & Related papers (2022-11-28T19:00:03Z) - Quantum Sensors for High Precision Measurements of Spin-dependent
Interactions [47.187609203210705]
Experimental methods and technologies developed for quantum information science have rapidly advanced in recent years.
Spin-based quantum sensors can be used to search for myriad phenomena.
Spin-based quantum sensors offer a methodology for tests of fundamental physics that is complementary to particle colliders and large scale particle detectors.
arXiv Detail & Related papers (2022-03-17T17:36:48Z) - Snowmass 2021: Quantum Sensors for HEP Science -- Interferometers,
Mechanics, Traps, and Clocks [0.0]
We focus on sensing with atomic interferometers, mechanical devices read out with optical or microwave fields, and precision spectroscopic methods.
We give a variety of detection targets relevant to particle physics for which these systems are uniquely poised to contribute.
arXiv Detail & Related papers (2022-03-14T16:29:19Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.