Quantum Gravitational Sensor for Space Debris
- URL: http://arxiv.org/abs/2211.15695v2
- Date: Sun, 28 May 2023 14:58:35 GMT
- Title: Quantum Gravitational Sensor for Space Debris
- Authors: Meng-Zhi Wu, Marko Toro\v{s}, Sougato Bose, Anupam Mazumdar
- Abstract summary: We will establish a three dimensional model to describe the gravity gradient signal from an external moving object.
We will then theoretically investigate the sensitivities using the matter-wave interferometer based on the Stern-Gerlach set-up.
We will consider objects near Earth-based experiments and space debris in proximity of satellites.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matter-wave interferometers have fundamental applications for gravity
experiments such as testing the equivalence principle and the quantum nature of
gravity. In addition, matter-wave interferometers can be used as quantum
sensors to measure the local gravitational acceleration caused by external
massive moving objects, thus lending itself for technological applications. In
this paper, we will establish a three dimensional model to describe the gravity
gradient signal from an external moving object, and theoretically investigate
the achievable sensitivities using the matter-wave interferometer based on the
Stern-Gerlach set-up. As an application we will consider the Mesoscopic
Interference for Metric and Curvature (MIMAC) and Gravitational wave detection
scheme [New J. Phys. 22, 083012 (2020)] and quantify its sensitivity to gravity
gradients using frequency-space analysis. We will consider objects near
Earth-based experiments and space debris in proximity of satellites and
estimate the minimum detectable mass of the object as a function of their
distance, velocity, and orientation.
Related papers
- Local Measurement Scheme of Gravitational Curvature using Atom Interferometers [0.4124271833765226]
We present a method in which the differential signal of two co-located interferometers singles out a phase shift proportional to the curvature of the gravitational potential.
We numerically simulate such a co-located gradiometric interferometer in the context of the Hannover VLBAI facility.
arXiv Detail & Related papers (2024-09-05T13:29:45Z) - Feynman Diagrams for Matter Wave Interferometry [0.0]
We introduce a new theoretical framework based on Feynman diagrams to compute phase shifts in matter wave interferometry.
We apply the method to compute the response of matter wave interferometers to power law potentials and potentials with an arbitrary spatial dependence.
arXiv Detail & Related papers (2024-07-16T07:26:19Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Tunneling Gravimetry [58.80169804428422]
We examine the prospects of utilizing matter-wave Fabry-P'erot interferometers for enhanced inertial sensing applications.
Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations.
arXiv Detail & Related papers (2022-05-19T09:22:11Z) - Position fixing with cold atom gravity gradiometers [56.45088569868981]
We propose a position fixing method for autonomous navigation using partial gravity gradient solutions from cold atom interferometers.
Using standard open source global gravity databases, we show stable navigation solutions for trajectories of over 1000km.
arXiv Detail & Related papers (2022-04-11T16:42:32Z) - Quantum Sensors for High Precision Measurements of Spin-dependent
Interactions [47.187609203210705]
Experimental methods and technologies developed for quantum information science have rapidly advanced in recent years.
Spin-based quantum sensors can be used to search for myriad phenomena.
Spin-based quantum sensors offer a methodology for tests of fundamental physics that is complementary to particle colliders and large scale particle detectors.
arXiv Detail & Related papers (2022-03-17T17:36:48Z) - Measuring space-time curvature using maximally path-entangled quantum
states [0.0]
gravitational aspects of quantum experiments performed so far can be explained either within Newtonian gravity or by Einstein's equivalence principle.
We show that the entanglement-induced increase in sensitivity also holds for gravitationally-induced phases in Mach-Zehnder interferometers.
arXiv Detail & Related papers (2022-02-25T08:50:58Z) - Using an atom interferometer to infer gravitational entanglement
generation [0.0]
We introduce the concept of interactive quantum information sensing.
We show that this protocol is highly robust to typical thermal noise sources.
Preliminary numerical estimates suggest that near-term devices could feasibly be used to perform the experiment.
arXiv Detail & Related papers (2021-01-27T19:00:05Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.