論文の概要: Low-Rank and Sparse Model Merging for Multi-Lingual Speech Recognition and Translation
- arxiv url: http://arxiv.org/abs/2502.17380v1
- Date: Mon, 24 Feb 2025 18:06:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:57:30.813989
- Title: Low-Rank and Sparse Model Merging for Multi-Lingual Speech Recognition and Translation
- Title(参考訳): 多言語音声認識と翻訳のための低域モデルとスパースモデルの統合
- Authors: Qiuming Zhao, Guangzhi Sun, Chao Zhang, Mingxing Xu, Thomas Fang Zheng,
- Abstract要約: 異なる言語やタスクでトレーニングされたモデルを効率的に統合するテクニックであるLoRS-Mergingを紹介する。
LoRS-Mergingは低ランクとスパースプルーニングを組み合わせることで、冗長なパラメータを排除しながら本質的な構造を維持する。
この結果から,モデルマージ,特にLoRS-Mergingは,従来のS2Tアプリケーションの多言語学習戦略をスケーラブルかつ効果的に補完するものであることが示唆された。
- 参考スコア(独自算出の注目度): 12.090488308404765
- License:
- Abstract: Language diversity presents a significant challenge in speech-to-text (S2T) tasks, such as automatic speech recognition and translation. Traditional multi-task training approaches aim to address this by jointly optimizing multiple speech recognition and translation tasks across various languages. While models like Whisper, built on these strategies, demonstrate strong performance, they still face issues of high computational cost, language interference, suboptimal training configurations, and limited extensibility. To overcome these challenges, we introduce LoRS-Merging (low-rank and sparse model merging), a novel technique designed to efficiently integrate models trained on different languages or tasks while preserving performance and reducing computational overhead. LoRS-Merging combines low-rank and sparse pruning to retain essential structures while eliminating redundant parameters, mitigating language and task interference, and enhancing extensibility. Experimental results across a range of languages demonstrate that LoRS-Merging significantly outperforms conventional multi-lingual multi-task training baselines. Our findings suggest that model merging, particularly LoRS-Merging, is a scalable and effective complement to traditional multi-lingual training strategies for S2T applications.
- Abstract(参考訳): 言語多様性は、自動音声認識や翻訳など、音声テキスト(S2T)タスクにおいて重要な課題である。
従来のマルチタスク学習手法は、様々な言語にまたがる複数の音声認識と翻訳タスクを共同で最適化することで、この問題に対処することを目的としている。
これらの戦略に基づいて構築されたWhisperのようなモデルは強力な性能を示すが、それでも高い計算コスト、言語干渉、準最適トレーニング構成、拡張性の制限といった問題に直面している。
これらの課題を克服するために,性能を保ち計算オーバーヘッドを低減しつつ,異なる言語やタスクで訓練されたモデルを効率的に統合する技術であるLoRS-Merging(低ランク・スパースモデルマージ)を導入する。
LoRS-Mergingは低ランクとスパースプルーニングを組み合わせて、冗長なパラメータを排除し、言語とタスクの干渉を緩和し、拡張性を高める。
実験の結果,LoRS-Mergingは従来の多言語マルチタスクトレーニングベースラインよりも大幅に優れていた。
この結果から,モデルマージ,特にLoRS-Mergingは,従来のS2Tアプリケーションの多言語学習戦略をスケーラブルかつ効果的に補完するものであることが示唆された。
関連論文リスト
- Demystifying Multilingual Chain-of-Thought in Process Reward Modeling [71.12193680015622]
プロセス報酬モデル(PRM)を多言語設定に拡張するという課題に対処する。
我々は、7つの言語にまたがるデータセット上で多言語PRMを訓練し、それを英語から翻訳する。
本結果は,学習言語数と英語データ量の両方に対する多言語PRMの感度を強調した。
論文 参考訳(メタデータ) (2025-02-18T09:11:44Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールルアーニング法
本稿では、QSLAWと呼ばれるマルチモーダルワームアップに基づく量子化対応スケールLeArning手法を提案する。
論文 参考訳(メタデータ) (2024-08-07T12:42:09Z) - Efficient Compression of Multitask Multilingual Speech Models [0.0]
DistilWhisperは、マルチタスクとマルチ言語機能の利点を維持しながら、これらの言語におけるASRのパフォーマンスギャップを埋めることができる。
提案手法は, 言語専門家を用いた軽量モジュール型ASR微調整と, ささやかな大口径v2からの知識蒸留の2つの戦略を含む。
論文 参考訳(メタデータ) (2024-05-02T03:11:59Z) - No Train but Gain: Language Arithmetic for training-free Language Adapters enhancement [59.37775534633868]
本稿では,学習不要な後処理が可能な言語演算法を提案する。
提案手法の有効性を,MAD-Xに基づく言語間スキームの3つの下流課題に適用した。
論文 参考訳(メタデータ) (2024-04-24T08:52:40Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Multilingual DistilWhisper: Efficient Distillation of Multi-task Speech
Models via Language-Specific Experts [14.999359332108767]
表現不足言語に対するASRの性能ギャップを埋めるため、DistilWhisperを提案する。
提案手法は, 言語専門家を用いた軽量モジュール型ASR微調整と, ささやかな大口径v2からの知識蒸留の2つの戦略を含む。
その結果,本手法は通常のファインチューニングやLoRAアダプタよりも効果的であることがわかった。
論文 参考訳(メタデータ) (2023-11-02T08:37:30Z) - Master-ASR: Achieving Multilingual Scalability and Low-Resource
Adaptation in ASR with Modular Learning [28.592569051244375]
METHODNSは、強力な多言語スケーラビリティと低リソース適応性を同時に実現している。
我々のフレームワークは、最先端(SOTA)メソッドよりも30%少ない推論オーバーヘッドで、0.13$sim$2.41低い文字誤り率(CER)を達成する。
論文 参考訳(メタデータ) (2023-06-23T16:23:00Z) - Adaptive Activation Network For Low Resource Multilingual Speech
Recognition [30.460501537763736]
ASRモデルの上位層に適応的アクティベーションネットワークを導入する。
また,(1)クロス言語学習,(2)アクティベーション関数をソース言語からターゲット言語に置き換える,(2)多言語学習という2つの手法を提案する。
IARPA Babelデータセットに関する実験により、我々のアプローチは、オフスクラッチトレーニングや従来のボトルネック機能に基づく手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-05-28T04:02:59Z) - Lightweight Cross-Lingual Sentence Representation Learning [57.9365829513914]
メモリ効率のよい言語間文表現を生成するために,2層のみの軽量なデュアルトランスフォーマーアーキテクチャを導入する。
本稿では,既存のシングルワードマスキング言語モデルと,新たに提案されたクロスランガルトークンレベルの再構築タスクを組み合わせた,新しい言語間言語モデルを提案する。
論文 参考訳(メタデータ) (2021-05-28T14:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。