論文の概要: Efficient Multilingual ASR Finetuning via LoRA Language Experts
- arxiv url: http://arxiv.org/abs/2506.21555v1
- Date: Wed, 11 Jun 2025 07:06:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-13 12:05:57.470246
- Title: Efficient Multilingual ASR Finetuning via LoRA Language Experts
- Title(参考訳): LoRA言語エキスパートによる効率的な多言語ASRファインタニング
- Authors: Jiahong Li, Yiwen Shao, Jianheng Zhuo, Chenda Li, Liliang Tang, Dong Yu, Yanmin Qian,
- Abstract要約: 本稿では,WhisperをベースとしたLoRA言語エキスパートによる多言語ASRをカスタマイズするための効率的な微調整フレームワークを提案する。
LoRAエキスパート融合や知識蒸留により,本手法は従来の微調整法よりも目標言語での認識性能が向上する。
実験の結果,提案モデルでは,言語認識および言語認識のシナリオにおいて,約10%と15%の性能向上が得られた。
- 参考スコア(独自算出の注目度): 59.27778147311189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in deep learning have significantly enhanced multilingual automatic speech recognition (ASR) due to the development of advanced model architectures and available large-scale multilingual datasets. Despite that, multilingual ASR still suffers from the curse of multilinguality in that different languages tend to interfere with each other, making it difficult for the ASR model to identify multiple languages effectively while sharing model capacity across them. This paper proposes an efficient finetuning framework for customized multilingual ASR via prepared LoRA language experts based on Whisper. Through LoRA expert fusion or knowledge distillation, our approach achieves better recognition performance on target languages than standard fine-tuning methods. Experimental results demonstrate that the proposed models yield approximately 10\% and 15\% relative performance gains in language-aware and language-agnostic scenarios, respectively.
- Abstract(参考訳): 近年のディープラーニングの進歩は、高度なモデルアーキテクチャと利用可能な大規模多言語データセットの開発により、多言語自動音声認識(ASR)を大幅に強化している。
にもかかわらず、多言語 ASR は、異なる言語が互いに干渉しがちな多言語性の呪いに苦しめられているため、モデル能力を共有しながら複数の言語を効果的に識別することは困難である。
本稿では,WhisperをベースとしたLoRA言語エキスパートによる多言語ASRをカスタマイズするための効率的な微調整フレームワークを提案する。
LoRAエキスパート融合や知識蒸留により,本手法は従来の微調整法よりも目標言語での認識性能が向上する。
実験結果から, 言語認識シナリオと言語認識シナリオでは, それぞれ約10 %, 15 %の相対的な性能向上が得られた。
関連論文リスト
- M-Prometheus: A Suite of Open Multilingual LLM Judges [64.22940792713713]
M-Prometheusは,多言語出力の直接評価とペア比較フィードバックを両立できるオープンウェイトLLM判定器のスイートである。
M-Prometheusモデルは、20以上の言語にまたがる多言語報酬ベンチマークや、4つの言語対をカバーする文語機械翻訳(MT)評価において、最先端のLLM判事より優れている。
論文 参考訳(メタデータ) (2025-04-07T11:37:26Z) - Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages [0.43498389175652036]
本研究は、従来の言語モデルと新しい言語モデルと微調整されたWhisperモデルを統合し、あまり一般的でない言語での性能を高める。
我々は、特に低リソースシナリオにおいて、単語エラー率を大幅に改善したことを示す。
統合はすべてのモデルサイズに確実に貢献するが、改善の程度は様々であり、最適化された言語モデルパラメータの重要性を強調している。
論文 参考訳(メタデータ) (2025-03-30T18:03:52Z) - Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling [50.62091603179394]
最も先進的なASRモデルの1つであるWhisperは99の言語を効果的に扱う。
しかし、ウィスパーは未確認の言語と戦っているが、それらは事前訓練には含まれていない。
本研究では,これらの関係を利用して未知言語上でのASR性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-12-21T04:05:43Z) - LoRA-Whisper: Parameter-Efficient and Extensible Multilingual ASR [16.85491995510297]
本稿では,多言語ASRのためのWhisperにLoRA行列を組み込んだLoRA-Whisperを提案する。
8言語にまたがる実世界のタスクの実験により,提案したLoRA-Whisperは,多言語ASRおよび言語拡張のためのベースラインシステムに対して,それぞれ18.5%と23.0%の相対的な利得が得られることが示された。
論文 参考訳(メタデータ) (2024-06-07T08:01:51Z) - Efficient Compression of Multitask Multilingual Speech Models [0.0]
DistilWhisperは、マルチタスクとマルチ言語機能の利点を維持しながら、これらの言語におけるASRのパフォーマンスギャップを埋めることができる。
提案手法は, 言語専門家を用いた軽量モジュール型ASR微調整と, ささやかな大口径v2からの知識蒸留の2つの戦略を含む。
論文 参考訳(メタデータ) (2024-05-02T03:11:59Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - Multilingual DistilWhisper: Efficient Distillation of Multi-task Speech
Models via Language-Specific Experts [14.999359332108767]
表現不足言語に対するASRの性能ギャップを埋めるため、DistilWhisperを提案する。
提案手法は, 言語専門家を用いた軽量モジュール型ASR微調整と, ささやかな大口径v2からの知識蒸留の2つの戦略を含む。
その結果,本手法は通常のファインチューニングやLoRAアダプタよりも効果的であることがわかった。
論文 参考訳(メタデータ) (2023-11-02T08:37:30Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
言語間音声認識のためのニューラルモデル再プログラミングに基づく新しいパラメータ効率学習フレームワークを提案する。
我々は、学習可能な事前学習機能強化に焦点を当てた、異なる補助的ニューラルネットワークアーキテクチャを設計する。
提案手法は,既存のASRチューニングアーキテクチャとその拡張性能を自己監督的損失で向上させる。
論文 参考訳(メタデータ) (2023-01-19T02:37:56Z) - How Phonotactics Affect Multilingual and Zero-shot ASR Performance [74.70048598292583]
Transformer encoder-decoderモデルは、トレーニング中に提示された言語のIPA転写において、多言語データをうまく活用することが示されている。
我々は,エンコーダデコーダをAMとLMを分離したハイブリッドASRシステムに置き換える。
交叉音韻律のモデル化による利得は限定的であり,強すぎるモデルがゼロショット転送を損なう可能性があることを示す。
論文 参考訳(メタデータ) (2020-10-22T23:07:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。