Parallelized telecom quantum networking with a ytterbium-171 atom array
- URL: http://arxiv.org/abs/2502.17406v2
- Date: Tue, 11 Mar 2025 00:49:08 GMT
- Title: Parallelized telecom quantum networking with a ytterbium-171 atom array
- Authors: Lintao Li, Xiye Hu, Zhubing Jia, William Huie, Won Kyu Calvin Sun, Aakash, Yuhao Dong, Narisak Hiri-O-Tuppa, Jacob P. Covey,
- Abstract summary: Integration of quantum computers and sensors into a quantum network opens a new frontier for quantum information science.<n>We demonstrate high-fidelity entanglement between ytterbium-171 atoms and optical atomic clocks.<n>Our work is a major step towards the integration of atomic processors and optical clocks into a high-rate or long-distance quantum network.
- Score: 1.4898183413499773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of quantum computers and sensors into a quantum network opens a new frontier for quantum information science. We demonstrate high-fidelity entanglement between ytterbium-171 atoms -- the basis for state-of-the-art atomic quantum processors and optical atomic clocks -- and optical photons directly generated in the telecommunication wavelength band where loss in optical fiber is minimal. We entangle the nuclear spin of the atom with a single photon in the time bin basis, and find an atom measurement-corrected (raw) atom-photon Bell state fidelity of $0.950(9)\pm0.005(3)_\text{bound}$ ($0.90(1)\pm0.014(3)_\text{bound}$). Photon measurement errors contribute $\approx0.037$ to our infidelity and can be removed with straightforward upgrades. Additionally, by imaging our atom array onto an optical fiber array, we demonstrate a parallelized networking protocol that can provide an $N$-fold boost in the remote entanglement rate. Finally, we demonstrate the ability to preserve coherence on a memory qubit while performing networking operations on communication qubits. Our work is a major step towards the integration of atomic processors and optical clocks into a high-rate or long-distance quantum network.
Related papers
- Spin-photon entanglement of a single Er$^{3+}$ ion in the telecom band [0.27376226833693]
Long-distance quantum communication using quantum repeaters is an enabling technology for secure communication.
As a building block of quantum repeaters, spin-photon entanglement has been demonstrated with both atomic and solid-state qubits.
Here, we demonstrate spin-photon entanglement using a single Er$3+$ ion in a solid-state crystal, integrated into a silicon nanophotonic circuit.
arXiv Detail & Related papers (2024-06-10T17:55:25Z) - High-rate and high-fidelity modular interconnects between neutral atom
quantum processors [0.0]
We propose an experimental protocol for generating entanglement between neutral ytterbium atom qubits using an optical cavity.
A twisted ring cavity geometry suppresses many sources of error, allowing high fidelity entanglement generation.
We estimate a spin-photon entanglement rate of $5 times 105$ s$-1$, and a Bell pair rate of $1.0times 105$ s$-1$, with an average fidelity near $0.999$.
arXiv Detail & Related papers (2024-01-08T18:26:19Z) - An integrated atom array -- nanophotonic chip platform with
background-free imaging [0.18641315013048299]
We demonstrate an architecture that combines atom arrays with up to 64 optical tweezers and a millimeter-scale photonic chip hosting more than 100 nanophotonic devices.
We achieve high-fidelity (99.2%), background-free imaging in close proximity to nano devices using a multichromatic excitation and detection scheme.
arXiv Detail & Related papers (2023-11-03T18:00:01Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Deterministic Storage and Retrieval of Telecom Quantum Dot Photons
Interfaced with an Atomic Quantum Memory [0.0]
We store photons from a semiconductor quantum dot in an atomic ensemble quantum memory at telecommunications wavelengths.
The signal-to-noise ratio of the retrieved photons is $18.2pm 0.6$, limited only by detector dark counts.
This demonstration paves the way to quantum technologies that rely on distributed entanglement, and is especially suited for photonic quantum networks.
arXiv Detail & Related papers (2023-03-07T19:00:01Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Nanophotonic quantum network node with neutral atoms and an integrated
telecom interface [0.38233569758620056]
We propose a quantum network node based on neutral alkali atoms coupled to nanophotonic crystal cavities.
We present a novel protocol for the generation of an atom-photon entangled state.
We find that a high fidelity entangled state can be generated with current technologies.
arXiv Detail & Related papers (2020-02-12T19:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.