Spin-photon entanglement of a single Er$^{3+}$ ion in the telecom band
- URL: http://arxiv.org/abs/2406.06515v2
- Date: Tue, 11 Jun 2024 21:49:20 GMT
- Title: Spin-photon entanglement of a single Er$^{3+}$ ion in the telecom band
- Authors: Mehmet T. Uysal, Ćukasz Dusanowski, Haitong Xu, Sebastian P. Horvath, Salim Ourari, Robert J. Cava, Nathalie P. de Leon, Jeff D. Thompson,
- Abstract summary: Long-distance quantum communication using quantum repeaters is an enabling technology for secure communication.
As a building block of quantum repeaters, spin-photon entanglement has been demonstrated with both atomic and solid-state qubits.
Here, we demonstrate spin-photon entanglement using a single Er$3+$ ion in a solid-state crystal, integrated into a silicon nanophotonic circuit.
- Score: 0.27376226833693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-distance quantum communication using quantum repeaters is an enabling technology for secure communication, distributed quantum computing and quantum-enhanced sensing and metrology. As a building block of quantum repeaters, spin-photon entanglement has been demonstrated with both atomic and solid-state qubits. However, previously demonstrated qubits with long spin coherence do not directly emit photons into the low-loss telecom band that is needed for long-distance communication. Here, we demonstrate spin-photon entanglement using a single Er$^{3+}$ ion in a solid-state crystal, integrated into a silicon nanophotonic circuit. Direct emission into the telecom band enables an entanglement rate of 1.48 Hz over 15.6 km of optical fiber, with a fidelity of 73(3)$\%$. This opens the door to large-scale quantum networks based on scalable nanophotonic devices and many spectrally multiplexed Er$^{3+}$ ions.
Related papers
- Hybrid Quantum Repeaters with Ensemble-based Quantum Memories and Single-spin Photon Transducers [13.607316611508045]
We propose to combine two promising hardware platforms in a hybrid quantum repeater architecture.
We describe how a single Rubidium (Rb) atom coupled to nanophotonic resonators can function as a high-rate, telecom-visible entangled photon source.
Our analysis shows that by employing up to 9 repeater stations, each equipped with two Tm-memories capable of holding up to 625 storage modes, along with four single Rb atoms, one can reach a quantum communication rate of about 10 secret bits per second across distances of up to 1000 km.
arXiv Detail & Related papers (2024-01-22T22:56:50Z) - Entanglement of Nanophotonic Quantum Memory Nodes in a Telecom Network [0.0]
We demonstrate entanglement of two nuclear spin memories through 40 km spools of low-loss fiber and a 35 km long fiber loop deployed in the Boston area urban environment.
By integrating efficient bi-directional quantum frequency conversion of photonic communication qubits to telecom frequencies (1350 nm), we demonstrate entanglement of two nuclear spin memories.
arXiv Detail & Related papers (2023-10-02T16:23:08Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Quantum storage of entangled photons at telecom wavelengths in a crystal [11.523962992775655]
We demonstrate the storage and recall of entangled state of two telecom photons generated from an integrated photonic chip.
Results pave the way for realizing quantum networks based on solid-state devices.
arXiv Detail & Related papers (2022-12-25T12:51:35Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.