Towards Hierarchical Rectified Flow
- URL: http://arxiv.org/abs/2502.17436v2
- Date: Sat, 01 Mar 2025 18:48:22 GMT
- Title: Towards Hierarchical Rectified Flow
- Authors: Yichi Zhang, Yici Yan, Alex Schwing, Zhizhen Zhao,
- Abstract summary: We formulate a hierarchical rectified flow to model data distributions.<n>We empirically defines a time-differentiable process that generates a data distribution from a known source distribution.<n>We verify this on synthetic 1D and 2D data as well as MNIST, CIFAR-10, and ImageNet-32 data.
- Score: 18.976435451156824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We formulate a hierarchical rectified flow to model data distributions. It hierarchically couples multiple ordinary differential equations (ODEs) and defines a time-differentiable stochastic process that generates a data distribution from a known source distribution. Each ODE resembles the ODE that is solved in a classic rectified flow, but differs in its domain, i.e., location, velocity, acceleration, etc. Unlike the classic rectified flow formulation, which formulates a single ODE in the location domain and only captures the expected velocity field (sufficient to capture a multi-modal data distribution), the hierarchical rectified flow formulation models the multi-modal random velocity field, acceleration field, etc., in their entirety. This more faithful modeling of the random velocity field enables integration paths to intersect when the underlying ODE is solved during data generation. Intersecting paths in turn lead to integration trajectories that are more straight than those obtained in the classic rectified flow formulation, where integration paths cannot intersect. This leads to modeling of data distributions with fewer neural function evaluations. We empirically verify this on synthetic 1D and 2D data as well as MNIST, CIFAR-10, and ImageNet-32 data. Our code is available at: https://riccizz.github.io/HRF/.
Related papers
- FlowDPS: Flow-Driven Posterior Sampling for Inverse Problems [51.99765487172328]
Posterior sampling for inverse problem solving can be effectively achieved using flows.
Flow-Driven Posterior Sampling (FlowDPS) outperforms state-of-the-art alternatives.
arXiv Detail & Related papers (2025-03-11T07:56:14Z) - Variational Rectified Flow Matching [100.63726791602049]
Variational Rectified Flow Matching enhances classic rectified flow matching by modeling multi-modal velocity vector-fields.<n>We show on synthetic data that variational rectified flow matching leads to compelling results.
arXiv Detail & Related papers (2025-02-13T18:59:15Z) - On the Wasserstein Convergence and Straightness of Rectified Flow [54.580605276017096]
Rectified Flow (RF) is a generative model that aims to learn straight flow trajectories from noise to data.
We provide a theoretical analysis of the Wasserstein distance between the sampling distribution of RF and the target distribution.
We present general conditions guaranteeing uniqueness and straightness of 1-RF, which is in line with previous empirical findings.
arXiv Detail & Related papers (2024-10-19T02:36:11Z) - Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow [65.51671121528858]
Diffusion models have greatly improved visual generation but are hindered by slow generation speed due to the computationally intensive nature of solving generative ODEs.
Rectified flow, a widely recognized solution, improves generation speed by straightening the ODE path.
We propose Rectified Diffusion, which generalizes the design space and application scope of rectification to encompass the broader category of diffusion models.
arXiv Detail & Related papers (2024-10-09T17:43:38Z) - Flow Map Matching [15.520853806024943]
Flow map matching is an algorithm that learns the two-time flow map of an underlying ordinary differential equation.
We show that flow map matching leads to high-quality samples with significantly reduced sampling cost compared to diffusion or interpolant methods.
arXiv Detail & Related papers (2024-06-11T17:41:26Z) - Diffusion models for Gaussian distributions: Exact solutions and Wasserstein errors [0.0]
Diffusion or score-based models recently showed high performance in image generation.
We study theoretically the behavior of diffusion models and their numerical implementation when the data distribution is Gaussian.
arXiv Detail & Related papers (2024-05-23T07:28:56Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Sequential Flow Straightening for Generative Modeling [14.521246785215808]
We propose SeqRF, a learning technique that straightens the probability flow to reduce the global truncation error.
We achieve surpassing results on CIFAR-10, CelebA-$64 times 64$, and LSUN-Church datasets.
arXiv Detail & Related papers (2024-02-09T15:09:38Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Discrete Denoising Flows [87.44537620217673]
We introduce a new discrete flow-based model for categorical random variables: Discrete Denoising Flows (DDFs)
In contrast with other discrete flow-based models, our model can be locally trained without introducing gradient bias.
We show that DDFs outperform Discrete Flows on modeling a toy example, binary MNIST and Cityscapes segmentation maps, measured in log-likelihood.
arXiv Detail & Related papers (2021-07-24T14:47:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.