Variational Rectified Flow Matching
- URL: http://arxiv.org/abs/2502.09616v1
- Date: Thu, 13 Feb 2025 18:59:15 GMT
- Title: Variational Rectified Flow Matching
- Authors: Pengsheng Guo, Alexander G. Schwing,
- Abstract summary: Variational Rectified Flow Matching enhances classic rectified flow matching by modeling multi-modal velocity vector-fields.
We show on synthetic data that variational rectified flow matching leads to compelling results.
- Score: 100.63726791602049
- License:
- Abstract: We study Variational Rectified Flow Matching, a framework that enhances classic rectified flow matching by modeling multi-modal velocity vector-fields. At inference time, classic rectified flow matching 'moves' samples from a source distribution to the target distribution by solving an ordinary differential equation via integration along a velocity vector-field. At training time, the velocity vector-field is learnt by linearly interpolating between coupled samples one drawn from the source and one drawn from the target distribution randomly. This leads to ''ground-truth'' velocity vector-fields that point in different directions at the same location, i.e., the velocity vector-fields are multi-modal/ambiguous. However, since training uses a standard mean-squared-error loss, the learnt velocity vector-field averages ''ground-truth'' directions and isn't multi-modal. In contrast, variational rectified flow matching learns and samples from multi-modal flow directions. We show on synthetic data, MNIST, CIFAR-10, and ImageNet that variational rectified flow matching leads to compelling results.
Related papers
- Flow Matching: Markov Kernels, Stochastic Processes and Transport Plans [1.9766522384767222]
Flow matching techniques can be used to solve inverse problems.
We show how flow matching can be used for solving inverse problems.
We briefly address continuous normalizing flows and score matching techniques.
arXiv Detail & Related papers (2025-01-28T10:28:17Z) - Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow [65.51671121528858]
Diffusion models have greatly improved visual generation but are hindered by slow generation speed due to the computationally intensive nature of solving generative ODEs.
Rectified flow, a widely recognized solution, improves generation speed by straightening the ODE path.
We propose Rectified Diffusion, which generalizes the design space and application scope of rectification to encompass the broader category of diffusion models.
arXiv Detail & Related papers (2024-10-09T17:43:38Z) - Unsupervised Representation Learning from Sparse Transformation Analysis [79.94858534887801]
We propose to learn representations from sequence data by factorizing the transformations of the latent variables into sparse components.
Input data are first encoded as distributions of latent activations and subsequently transformed using a probability flow model.
arXiv Detail & Related papers (2024-10-07T23:53:25Z) - Consistency Flow Matching: Defining Straight Flows with Velocity Consistency [97.28511135503176]
We introduce Consistency Flow Matching (Consistency-FM), a novel FM method that explicitly enforces self-consistency in the velocity field.
Preliminary experiments demonstrate that our Consistency-FM significantly improves training efficiency by converging 4.4x faster than consistency models.
arXiv Detail & Related papers (2024-07-02T16:15:37Z) - Flow Map Matching [15.520853806024943]
Flow map matching is an algorithm that learns the two-time flow map of an underlying ordinary differential equation.
We show that flow map matching leads to high-quality samples with significantly reduced sampling cost compared to diffusion or interpolant methods.
arXiv Detail & Related papers (2024-06-11T17:41:26Z) - MGF: Mixed Gaussian Flow for Diverse Trajectory Prediction [72.70572835589158]
We propose constructing a mixed Gaussian prior for a normalizing flow model for trajectory prediction.
Our method achieves state-of-the-art performance in the evaluation of both trajectory alignment and diversity on the popular UCY/ETH and SDD datasets.
arXiv Detail & Related papers (2024-02-19T15:48:55Z) - Flow Matching for Generative Modeling [44.66897082688762]
Flow Matching is a simulation-free approach for training Continuous Normalizing Flows (CNFs)
We find that employing FM with diffusion paths results in a more robust and stable alternative for training diffusion models.
Training CNFs using Flow Matching on ImageNet leads to state-of-the-art performance in terms of both likelihood and sample quality.
arXiv Detail & Related papers (2022-10-06T08:32:20Z) - Building Normalizing Flows with Stochastic Interpolants [11.22149158986164]
A simple generative quadratic model based on a continuous-time normalizing flow between any pair of base and target distributions is proposed.
The velocity field of this flow is inferred from the probability current of a time-dependent distribution that interpolates between the base and the target in finite time.
arXiv Detail & Related papers (2022-09-30T16:30:31Z) - LiteFlowNet3: Resolving Correspondence Ambiguity for More Accurate
Optical Flow Estimation [99.19322851246972]
We introduce LiteFlowNet3, a deep network consisting of two specialized modules to address the problem of optical flow estimation.
LiteFlowNet3 not only achieves promising results on public benchmarks but also has a small model size and a fast runtime.
arXiv Detail & Related papers (2020-07-18T03:30:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.