論文の概要: Large Language Models as Realistic Microservice Trace Generators
- arxiv url: http://arxiv.org/abs/2502.17439v2
- Date: Wed, 26 Feb 2025 03:02:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:54:54.310868
- Title: Large Language Models as Realistic Microservice Trace Generators
- Title(参考訳): マイクロサービストレースジェネレータとしての大規模言語モデル
- Authors: Donghyun Kim, Sriram Ravula, Taemin Ha, Alexandros G. Dimakis, Daehyeok Kim, Aditya Akella,
- Abstract要約: ワークロードトレースは、複雑なコンピュータシステムの振る舞いを理解し、処理とメモリリソースを管理するために不可欠である。
本稿では,大規模言語モデルを用いて合成ワークロードトレースを生成する手法を提案する。
我々のモデルは、キートレースの特徴を予測したり、欠落したデータを埋め込んだりといった、下流のトレース関連タスクに適応する。
- 参考スコア(独自算出の注目度): 54.85489678342595
- License:
- Abstract: Workload traces are essential to understand complex computer systems' behavior and manage processing and memory resources. Since real-world traces are hard to obtain, synthetic trace generation is a promising alternative. This paper proposes a first-of-a-kind approach that relies on training a large language model (LLM) to generate synthetic workload traces, specifically microservice call graphs. To capture complex and arbitrary hierarchical structures and implicit constraints in such traces, we show how to fine-tune LLMs to generate recursively, making call graph generation a sequence of easier steps. To further enforce learning constraints in traces and generate uncommon situations, we argue for applying additional instruction tuning steps to align our model with the desired trace features. Our evaluation results show that we can generate diverse realistic traces under various conditions and outperform existing methods in accuracy and validity. We demonstrate that our synthetically generated traces can effectively replace real data to optimize important microservice management tasks. Additionally, our model adapts to downstream trace-related tasks, such as predicting key trace features and infilling missing data.
- Abstract(参考訳): ワークロードトレースは、複雑なコンピュータシステムの振る舞いを理解し、処理とメモリリソースを管理するために不可欠である。
現実世界のトレースは入手が難しいため、合成トレース生成は有望な代替手段である。
本稿では,大規模言語モデル(LLM)をトレーニングして,特にマイクロサービスコールグラフの合成作業負荷トレースを生成する,第一種アプローチを提案する。
複雑で任意の階層構造とそのようなトレースにおける暗黙の制約を捉えるために、再帰的にLCMを微調整して生成する方法を示し、コールグラフ生成をより簡単なステップのシーケンスにする。
トレースにおける学習制約をさらに強化し、異常な状況を生成するために、我々のモデルを所望のトレース特徴と整合させるために、追加の命令チューニング手順を適用することを議論する。
評価の結果,様々な条件下で多様なリアルなトレースを生成でき,既存の手法よりも精度と妥当性が高いことがわかった。
合成生成されたトレースが、実際のデータを効果的に置き換えて、重要なマイクロサービス管理タスクを最適化できることを実証します。
さらに、我々のモデルは、キートレースの特徴を予測したり、欠落したデータを埋め込んだりといった、下流のトレース関連のタスクに適応します。
関連論文リスト
- Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks [23.07584018576066]
We propose a SiMple yet effectIve approach for graph few-shot Learning with fEwer task, named SMILE。
メタ学習において利用可能なノードとタスクを同時に強化するために、マルチレベルのミックスアップ戦略を導入し、タスク内とタスク間ミックスアップの両方を包含する。
経験的に言えば、SMILEは、ドメイン内設定とクロスドメイン設定で評価されたすべてのデータセットに対して、他の競合モデルよりも大きなマージンで、一貫して優れています。
論文 参考訳(メタデータ) (2025-02-19T23:59:05Z) - Code Simulation as a Proxy for High-order Tasks in Large Language Models [6.71786454125056]
我々は、Large Language Models (LLM) の能力を評価するために、自然主義的および合成的推論タスクのペアを収集する。
我々は、プログラミングにおける共通構造を、自然主義的推論タスクの構成要素の1つとして活用する。
我々の貢献は、手作りの人間注記問題に対するスケーラブルな補完として、LLMの推論能力を総合的にテストすることの上に成り立っている。
論文 参考訳(メタデータ) (2025-02-05T19:30:28Z) - OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis [55.390060529534644]
グラフィカルユーザインタフェース(GUI)エージェントのための新しいデータ合成パイプラインであるOS-Genesisを提案する。
事前に定義されたタスクに頼る代わりに、OS-Genesisはエージェントがまず環境を認識し、ステップワイドなインタラクションを実行することを可能にする。
次に、生成された軌道の品質を保証するために軌道報酬モデルを用いる。
論文 参考訳(メタデータ) (2024-12-27T16:21:58Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
本稿では,視覚に基づく制御ポリシを用いて,ロバストな閉ループ性能を実現するために必要な最小限のデータ要件とアーキテクチャ適応について検討する。
この知見はFlex (Fly-lexically) で合成され,VLM(Vision Language Models) をフリーズしたパッチワイド特徴抽出器として利用するフレームワークである。
本研究では,本手法が4段階のフライ・トゥ・ターゲットタスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2024-10-16T19:59:31Z) - TraceMesh: Scalable and Streaming Sampling for Distributed Traces [51.08892669409318]
TraceMeshは、分散トレースのためのスケーラブルでストリーミングなサンプリングツールである。
以前は見つからなかったトレース機能を、統一的で合理化された方法で扱える。
TraceMeshは、サンプリング精度と効率の両方において、最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-06-11T06:13:58Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
グラフニューラルネットワーク(GNN)は、異なるグラフタスクやデータセットに適用されるたびに、再トレーニングされる必要がある。
GNNとLarge Language Models(LLM)の強みをシームレスに統合する新しいフレームワークMusteGraphを提案する。
実験結果から,異なるグラフタスクの大幅な改善が示された。
論文 参考訳(メタデータ) (2024-03-02T09:27:32Z) - Transformer-based Causal Language Models Perform Clustering [20.430255724239448]
簡単な指示追従タスクを導入し、合成データセットを用いてトランスフォーマーに基づく因果言語モデルを分析する。
本研究は,本モデルが隠れ空間内のデータをクラスタリングすることで,タスク固有の情報を学習し,学習中にこのクラスタリングプロセスが動的に進化することを示唆している。
論文 参考訳(メタデータ) (2024-02-19T14:02:31Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。