論文の概要: What I cannot execute, I do not understand: Training and Evaluating LLMs on Program Execution Traces
- arxiv url: http://arxiv.org/abs/2503.05703v1
- Date: Mon, 10 Feb 2025 14:42:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 10:47:22.752275
- Title: What I cannot execute, I do not understand: Training and Evaluating LLMs on Program Execution Traces
- Title(参考訳): プログラム実行トレース上でのLCMのトレーニングと評価
- Authors: Jordi Armengol-Estapé, Quentin Carbonneaux, Tianjun Zhang, Aram H. Markosyan, Volker Seeker, Chris Cummins, Melanie Kambadur, Michael F. P. O'Boyle, Sida Wang, Gabriel Synnaeve, Hugh James Leather,
- Abstract要約: 本研究では,実世界のプログラム実行トレースを明示的にモデル化する訓練手順であるExecution Tuning(E.T.)について検討する。
我々は,異なる実行トレースの粒度(ラインレベルと命令レベル)のモデルと,出力予測のタスクに関する戦略を訓練し,評価する。
- 参考スコア(独自算出の注目度): 27.090845930270486
- License:
- Abstract: Code generation and understanding are critical capabilities for large language models (LLMs). Thus, most LLMs are pretrained and fine-tuned on code data. However, these datasets typically treat code as static strings and rarely exploit the dynamic information about their execution. Building upon previous work on trace modeling, we study Execution Tuning (E.T.), a training procedure in which we explicitly model real-world program execution traces without requiring manual test annotations. We train and evaluate models on different execution trace granularities (line and instruction-level) and strategies on the task of output prediction, obtaining around 80% accuracy on CruxEval and MBPP, and showing the advantages of dynamic scratchpads (i.e., self-contained intermediate computations updated by the model rather than accumulated as a history of past computations) on long executions (up to 14k steps). Finally, we discuss E.T.'s practical applications.
- Abstract(参考訳): コード生成と理解は、大きな言語モデル(LLM)にとって重要な機能である。
したがって、ほとんどのLLMは事前訓練され、コードデータに基づいて微調整される。
しかしながら、これらのデータセットは通常、コードを静的文字列として扱い、実行に関する動的な情報を活用することはめったにない。
手動テストアノテーションを必要とせずに実世界のプログラム実行トレースを明示的にモデル化する訓練手順であるExecution Tuning(E.T.)について検討した。
本研究では,CruxEval と MBPP の精度を約80% 向上し,長期実行(最大 14k ステップまで)における動的スクラッチパッド(過去の計算履歴として蓄積されるのではなく,モデルによって更新される自己完結型中間計算)の利点を示す。
最後に、E.T.の実践的応用について論じる。
関連論文リスト
- UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance [65.01483640267885]
大きな言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示してきたが、コード生成は依然として大きな課題である。
私たちは、モデル生成ユニットテストを活用してコード生成プロセスのガイドと検証を行う、システマティックパイプラインであるUnitCoderを紹介します。
我々の研究は、モデル生成単体テストを利用して、事前学習コーパスから高品質なコードデータの合成を誘導するスケーラブルなアプローチを提案する。
論文 参考訳(メタデータ) (2025-02-17T05:37:02Z) - Experience of Training a 1.7B-Parameter LLaMa Model From Scratch [10.39475177812483]
約200億個のデータに対するDMaS-LLaMa-Liteのトレーニングから得られた洞察を共有します。
我々は、検証損失レベルとダウンストリームベンチマークの進化が、不整合テキストから、流動的で文脈に根ざしたアウトプットへの移行を反映しているかを記述した、完全なトレーニングの軌跡を詳述する。
これらの経験を詳述し、トレーニングログ、チェックポイント、サンプルアウトプットを提供することで、将来の研究者や実践者が事前学習戦略を洗練することを目指している。
論文 参考訳(メタデータ) (2024-12-17T21:15:52Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
モデルの一般化動作は,事前記憶列車の精度と呼ばれるトレーニング指標によって効果的に特徴づけられることがわかった。
モデルの学習行動と一般化を結びつけることで、トレーニング戦略に目標とする改善を導くことができる。
論文 参考訳(メタデータ) (2024-11-12T09:52:40Z) - Code Less, Align More: Efficient LLM Fine-tuning for Code Generation with Data Pruning [4.975728472540823]
各種クラスタリングとプルーニングのメトリクスを統合して、生成されたコードの正確性や機能を損なうことなく、トレーニングデータを選択的に削減する手法を提案する。
実験により,これらのプルーニング戦略は,必要な計算資源を削減するだけでなく,全体的な品質コード生成を向上することが示された。
論文 参考訳(メタデータ) (2024-07-06T10:30:43Z) - Instruction Pre-Training: Language Models are Supervised Multitask Learners [115.95022434390181]
本稿では,事前学習言語モデル(LM)に対して,命令応答対を用いた大規模生コーパスを付加するフレームワークを提案する。
実験では,40以上のタスクカテゴリをカバーする2億の命令応答ペアを合成し,インストラクション事前学習の有効性を検証する。
論文 参考訳(メタデータ) (2024-06-20T16:55:33Z) - NExT: Teaching Large Language Models to Reason about Code Execution [50.93581376646064]
大規模言語モデル(LLM)のコードは通常、プログラムの表面テキスト形式に基づいて訓練される。
NExTは,プログラムの実行トレースを検査し,実行時の動作を判断する手法である。
論文 参考訳(メタデータ) (2024-04-23T01:46:32Z) - TRACED: Execution-aware Pre-training for Source Code [24.101763959136058]
TRACEDは、ソースコードに対する実行対応事前学習戦略である。
私たちの目標は、事前トレーニング中に複雑な実行ロジックをコードモデルに教えることです。
TRACEDは静的に事前訓練されたコードモデルを、完全な実行パス予測では12.4%、実行時変数値予測では25.2%改善している。
論文 参考訳(メタデータ) (2023-06-13T01:30:14Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
トレーニングコーパスの高度に代表的なサブセットを選択するために、サブモジュラー最適化を利用する方法を示す。
その結果,完全学習モデルの性能の最大$sim99%が得られた。
論文 参考訳(メタデータ) (2023-05-11T09:24:41Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
本稿では,大規模な微分モデルに対して有効かつ計算的に抽出可能なデータ属性法であるTRAK(Tracing with Randomly-trained After Kernel)を提案する。
論文 参考訳(メタデータ) (2023-03-24T17:56:22Z) - Execution-based Evaluation for Data Science Code Generation Models [97.96608263010913]
データサイエンスコード生成タスクの実行評価のための評価データセットであるExeDSを紹介する。
ExeDSにはJupyter Notebooksの534の問題が含まれており、それぞれがコードコンテキスト、タスク記述、参照プログラム、望ましい実行出力で構成されている。
表面形状評価スコアを高い精度で達成した5つの最先端コード生成モデルの実行性能を評価する。
論文 参考訳(メタデータ) (2022-11-17T07:04:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。