論文の概要: Physics Informed Neural Network Estimated Circuit Parameter Adaptive Modulation of DAB
- arxiv url: http://arxiv.org/abs/2502.17452v1
- Date: Sat, 08 Feb 2025 04:20:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 03:22:53.291748
- Title: Physics Informed Neural Network Estimated Circuit Parameter Adaptive Modulation of DAB
- Title(参考訳): 物理インフォームドニューラルネットワークによるDABの回路パラメータ適応変調
- Authors: Saikat Dey, Ayan Mallik,
- Abstract要約: 提案手法は,物理インフォームドニューラルネットワークを用いて推定した回路パラメータに基づいて制御パラメータを調整する。
本稿では、デュアルアクティブブリッジDC-DCコンバータにおける損失最適化および回路パラメータ感受性TPS変調方式の開発、実装、検証について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This article presents the development, implementation, and validation of a loss-optimized and circuit parameter-sensitive TPS modulation scheme for a dual-active-bridge DC-DC converter. The proposed approach dynamically adjusts control parameters based on circuit parameters estimated using a physics-informed neural network.
- Abstract(参考訳): 本稿では、デュアルアクティブブリッジDC-DCコンバータにおける損失最適化および回路パラメータ感受性TPS変調方式の開発、実装、検証について述べる。
提案手法は物理インフォームドニューラルネットワークを用いて推定した回路パラメータに基づいて制御パラメータを動的に調整する。
関連論文リスト
- Data-driven Modeling of Parameterized Nonlinear Fluid Dynamical Systems with a Dynamics-embedded Conditional Generative Adversarial Network [0.0]
本稿では,動的生成条件付きGAN(Dyn-cGAN)を代理モデルとして,パラメータ化非線形流体力学系を正確に予測する。
学習したDyn-cGANモデルはシステムの流れ場を正確に予測するためにシステムパラメータを考慮に入れている。
論文 参考訳(メタデータ) (2024-12-23T20:50:20Z) - Mitigating Parameter Degeneracy using Joint Conditional Diffusion Model for WECC Composite Load Model in Power Systems [2.7212274374272543]
連立条件拡散モデルに基づく逆問題解法(JCDI)を開発した。
JCDIは、パラメータの一般化性を改善するために、マルチイベント観測を同時に入力するジョイントコンディショニングアーキテクチャを組み込んでいる。
WECC CLMのシミュレーション研究により、提案したJCDIは縮退パラメータの不確かさを効果的に低減することを示した。
論文 参考訳(メタデータ) (2024-11-15T18:53:08Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
マルチジェネレータ・ウェーブ・エナジー・コンバータ(WEC)は、スプレッド・ウェーブと呼ばれる異なる方向から来る複数の同時波を処理しなければならない。
これらの複雑な装置は、エネルギー捕獲効率、維持を制限する構造的ストレスの低減、高波に対する積極的な保護という複数の目的を持つコントローラを必要とする。
本稿では,システム力学のシーケンシャルな性質をモデル化する上で,ポリシーと批判ネットワークの異なる機能近似について検討する。
論文 参考訳(メタデータ) (2024-04-17T02:04:10Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - Artificial-Intelligence-Based Triple Phase Shift Modulation for Dual
Active Bridge Converter with Minimized Current Stress [7.061179806642582]
トリプル位相シフト(TPS)は、DABコンバータの最も先進的な変調手法の1つである。
DABコンバータの電流応力は、TPS変調を適用した際の重要な性能指標である。
本稿では,AIベースのTPS変調(AI-TPSM)戦略を提案する。
提案したAI-TPSMの有効性は1kWのプロトタイプで実験的に検証されている。
論文 参考訳(メタデータ) (2023-08-01T08:49:55Z) - An Artificial Neural Network-Based Model Predictive Control for
Three-phase Flying Capacitor Multi-Level Inverter [2.3513645401551333]
モデル予測制御(MPC)は、単純な概念、高速な動的応答、優れた参照追跡のため、パワーエレクトロニクスで広く使われている。
最適なスイッチング状態を予測するためにシステムの数学的モデルに依存するため、パラメトリックな不確実性に悩まされる。
本稿では,ニューラルネットワーク(ANN)に基づくモデルフリー制御戦略を提案する。
論文 参考訳(メタデータ) (2021-10-15T13:54:08Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
バナジウムフローバッテリ(VRFB)のゼロ次元(0D)モデルにおけるパラメータ推定のための物理拘束型ディープニューラルネットワーク(PCDNN)を提案する。
そこで, PCDNN法は, 動作条件のモデルパラメータを推定し, 電圧の0Dモデル予測を改善することができることを示す。
また,PCDNNアプローチでは,トレーニングに使用しない操作条件のパラメータ値を推定する一般化能力が向上することが実証された。
論文 参考訳(メタデータ) (2021-06-21T23:42:58Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - An Intelligent Control Strategy for buck DC-DC Converter via Deep
Reinforcement Learning [1.4502611532302039]
定電力負荷(CPL)を有するバックDC-DCコンバータの革新的な知的制御戦略を初めて構築する。
DC-DCコンバータでは、マルコフ決定プロセス(MDP)モデルとディープQネットワーク(DQN)アルゴリズムが定義される。
エージェント-環境相互作用を調整するために,モデルフリーの深層強化学習(DRL)制御戦略を適切に設計する。
論文 参考訳(メタデータ) (2020-08-11T06:38:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。