論文の概要: Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers
- arxiv url: http://arxiv.org/abs/2412.17542v1
- Date: Mon, 23 Dec 2024 13:05:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:55:31.778527
- Title: Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers
- Title(参考訳): 心臓バイオマーカーのin-Vivo予測のためのレバレッジ心血管シミュレーション
- Authors: Laura Manduchi, Antoine Wehenkel, Jens Behrmann, Luca Pegolotti, Andy C. Miller, Ozan Sener, Marco Cuturi, Guillermo Sapiro, Jörn-Henrik Jacobsen,
- Abstract要約: 我々は、新たに構築された心臓シミュレーションの大規模なデータセットに基づいて、無傷神経後部推定器を訓練する。
シミュレーションデータと実世界の測定値との整合性を改善するために,要素モデリング効果を取り入れた。
提案するフレームワークは,実世界のデータに対する予測能力を向上するために,インバイブなデータソースをさらに統合することができる。
- 参考スコア(独自算出の注目度): 43.17768785084301
- License:
- Abstract: Whole-body hemodynamics simulators, which model blood flow and pressure waveforms as functions of physiological parameters, are now essential tools for studying cardiovascular systems. However, solving the corresponding inverse problem of mapping observations (e.g., arterial pressure waveforms at specific locations in the arterial network) back to plausible physiological parameters remains challenging. Leveraging recent advances in simulation-based inference, we cast this problem as statistical inference by training an amortized neural posterior estimator on a newly built large dataset of cardiac simulations that we publicly release. To better align simulated data with real-world measurements, we incorporate stochastic elements modeling exogenous effects. The proposed framework can further integrate in-vivo data sources to refine its predictive capabilities on real-world data. In silico, we demonstrate that the proposed framework enables finely quantifying uncertainty associated with individual measurements, allowing trustworthy prediction of four biomarkers of clinical interest--namely Heart Rate, Cardiac Output, Systemic Vascular Resistance, and Left Ventricular Ejection Time--from arterial pressure waveforms and photoplethysmograms. Furthermore, we validate the framework in vivo, where our method accurately captures temporal trends in CO and SVR monitoring on the VitalDB dataset. Finally, the predictive error made by the model monotonically increases with the predicted uncertainty, thereby directly supporting the automatic rejection of unusable measurements.
- Abstract(参考訳): 生理的パラメータの関数として血流と圧力波形をモデル化する全身血行動態シミュレータは、現在では心臓血管系の研究に欠かせないツールとなっている。
しかし, 血管内の特定の部位における動脈圧波形の対応する逆問題(例えば, 動脈圧波形)を, 可視的生理的パラメータに戻すことは依然として困難である。
シミュレーションベース推論の最近の進歩を生かして、我々はこの問題を、新たに構築された心シミュレーションの大規模なデータセットに基づいて、償却された神経後部推定器をトレーニングすることで、統計的推論として用いた。
シミュレーションデータと実世界の測定値との整合性を改善するために,外因性効果をモデル化した確率的要素を組み込んだ。
提案するフレームワークは,実世界のデータに対する予測能力を向上するために,インバイブなデータソースをさらに統合することができる。
サイリコでは,動脈圧波形と光胸筋電図から,心拍数,心臓出力,全身血管抵抗,左室誘発時間という4つのバイオマーカーの信頼性の高い予測を可能にした。
さらに,本手法をin vivoで検証し,VitalDBデータセット上でのCOおよびSVRモニタリングの時間的傾向を正確に把握する。
最後に、予測不確実性とともにモデルによる予測誤差が単調に増加し、不使用測定の自動拒絶を直接支援する。
関連論文リスト
- Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior [2.3971720731010766]
本稿では,拍動血行動態を推定するために,機械学習を利用した時間効率な代理モデルを提案する。
本モデルでは, 震源領域の再サンプリングに依存せず, 脈動速度と圧力の正確な推定値が得られた。
論文 参考訳(メタデータ) (2024-10-15T12:24:50Z) - Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction [0.0]
グラフニューラルネットワーク(GNN)は、有限体積(FV)離散化によって得られるメッシュの自然なグラフ構造を利用する。
実験的な検証フレームワークは有望な結果をもたらし,その方法が次元の呪いを克服する有効な代替手段であることを確認した。
論文 参考訳(メタデータ) (2024-10-04T09:39:15Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
シミュレーションに基づく推論を用いて、波形をプラプシブルな生理的パラメータにマッピングする逆問題を解決する。
臨床応用5種類のバイオマーカーのin-silico不確実性解析を行った。
我々はMIMIC-III波形データベースを用いて,ビビオとシリカのギャップについて検討した。
論文 参考訳(メタデータ) (2023-07-26T02:34:57Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Continuous Forecasting via Neural Eigen Decomposition of Stochastic
Dynamics [47.82509795873254]
本稿では,スパース観測と適応力学を用いた逐次予測のためのニューラル固有SDEアルゴリズムを提案する。
NESDEは、スパース観測による効率的な頻繁な予測を可能にするために、力学モデルに固有分解を適用する。
我々は,MIMIC-IVデータセットにおけるヘパリン投与後の血液凝固の患者適応予測を初めて行った。
論文 参考訳(メタデータ) (2022-01-31T22:16:50Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
本研究では, 心筋灌流MR定量化のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、基礎となる物理保存法則を尊重しながら、観測された拡散MRデータに適合するように訓練することができる。
論文 参考訳(メタデータ) (2020-11-25T16:02:52Z) - Joint data imputation and mechanistic modelling for simulating
heart-brain interactions in incomplete datasets [5.178090215294132]
本稿では, 心血管機構モデルを用いた共同心臓データ計算とパーソナライズのための確率的枠組みを提案する。
本手法は, 利用可能な特徴量から, 心臓情報の計算モデルを用いて, 共同推論を行うための変動的枠組みに基づくものである。
本モデルは,最小限の心情報を含むデータセットにおいて,欠落した心機能の正確な計算を可能にすることを示す。
論文 参考訳(メタデータ) (2020-10-02T15:31:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。