Using Graph Convolutional Networks to Address fMRI Small Data Problems
- URL: http://arxiv.org/abs/2502.17489v1
- Date: Wed, 19 Feb 2025 18:05:46 GMT
- Title: Using Graph Convolutional Networks to Address fMRI Small Data Problems
- Authors: Thomas Screven, Andras Necz, Jason Smucny, Ian Davidson,
- Abstract summary: We address the learning from small data problems for medical imaging using graph neural networks.<n>We show how a spectral representation of the connectivity data allows for efficient propagation.<n>Our method's superior performance is due to a data smoothing result that can be measured by closing the number of triangle inequalities.
- Score: 13.215224901936194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although great advances in the analysis of neuroimaging data have been made, a major challenge is a lack of training data. This is less problematic in tasks such as diagnosis, where much data exists, but particularly prevalent in harder problems such as predicting treatment responses (prognosis), where data is focused and hence limited. Here, we address the learning from small data problems for medical imaging using graph neural networks. This is particularly challenging as the information about the patients is themselves graphs (regions of interest connectivity graphs). We show how a spectral representation of the connectivity data allows for efficient propagation that can yield approximately 12\% improvement over traditional deep learning methods using the exact same data. We show that our method's superior performance is due to a data smoothing result that can be measured by closing the number of triangle inequalities and thereby satisfying transitivity.
Related papers
- GraphGuard: Detecting and Counteracting Training Data Misuse in Graph
Neural Networks [69.97213941893351]
The emergence of Graph Neural Networks (GNNs) in graph data analysis has raised critical concerns about data misuse during model training.
Existing methodologies address either data misuse detection or mitigation, and are primarily designed for local GNN models.
This paper introduces a pioneering approach called GraphGuard, to tackle these challenges.
arXiv Detail & Related papers (2023-12-13T02:59:37Z) - Connecting the Dots: Graph Neural Network Powered Ensemble and
Classification of Medical Images [0.0]
Deep learning for medical imaging is limited due to the requirement for large amounts of training data.
We employ the Image Foresting Transform to optimally segment images into superpixels.
These superpixels are subsequently transformed into graph-structured data, enabling the proficient extraction of features and modeling of relationships.
arXiv Detail & Related papers (2023-11-13T13:20:54Z) - Training Differentially Private Graph Neural Networks with Random Walk
Sampling [1.8059331230167266]
Differentially private descent is the de facto standard for training neural networks without leaking sensitive information about the training data.
In practice, this limits privacy-preserving deep learning on graphs to very shallow graph neural networks.
We propose to solve this issue by training graph neural networks on disjoint subgraphs of a given training graph.
arXiv Detail & Related papers (2023-01-02T16:14:50Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - Distributed Graph Learning with Smooth Data Priors [61.405131495287755]
We propose a novel distributed graph learning algorithm, which permits to infer a graph from signal observations on the nodes.
Our results show that the distributed approach has a lower communication cost than a centralised algorithm without compromising the accuracy in the inferred graph.
arXiv Detail & Related papers (2021-12-11T00:52:02Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
We propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data.
By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly.
arXiv Detail & Related papers (2021-03-27T04:47:59Z) - Edge-variational Graph Convolutional Networks for Uncertainty-aware
Disease Prediction [7.6146285961466]
We propose a generalizable framework that can automatically integrate imaging data with non-imaging data in populations for uncertainty-aware disease prediction.
Experimental results on four databases show that our method can consistently and significantly improve the diagnostic accuracy for Autism spectrum disorder, Alzheimer's disease, and ocular diseases.
arXiv Detail & Related papers (2020-09-06T15:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.