Edge-variational Graph Convolutional Networks for Uncertainty-aware
Disease Prediction
- URL: http://arxiv.org/abs/2009.02759v1
- Date: Sun, 6 Sep 2020 15:53:17 GMT
- Title: Edge-variational Graph Convolutional Networks for Uncertainty-aware
Disease Prediction
- Authors: Yongxiang Huang and Albert C. S. Chung
- Abstract summary: We propose a generalizable framework that can automatically integrate imaging data with non-imaging data in populations for uncertainty-aware disease prediction.
Experimental results on four databases show that our method can consistently and significantly improve the diagnostic accuracy for Autism spectrum disorder, Alzheimer's disease, and ocular diseases.
- Score: 7.6146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a rising need for computational models that can complementarily
leverage data of different modalities while investigating associations between
subjects for population-based disease analysis. Despite the success of
convolutional neural networks in representation learning for imaging data, it
is still a very challenging task. In this paper, we propose a generalizable
framework that can automatically integrate imaging data with non-imaging data
in populations for uncertainty-aware disease prediction. At its core is a
learnable adaptive population graph with variational edges, which we
mathematically prove that it is optimizable in conjunction with graph
convolutional neural networks. To estimate the predictive uncertainty related
to the graph topology, we propose the novel concept of Monte-Carlo edge
dropout. Experimental results on four databases show that our method can
consistently and significantly improve the diagnostic accuracy for Autism
spectrum disorder, Alzheimer's disease, and ocular diseases, indicating its
generalizability in leveraging multimodal data for computer-aided diagnosis.
Related papers
- Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
arXiv Detail & Related papers (2023-11-13T14:36:29Z) - Adaptive Gated Graph Convolutional Network for Explainable Diagnosis of
Alzheimer's Disease using EEG Data [9.601125513491835]
We propose a novel adaptive gated graph convolutional network (AGGCN) that can provide explainable predictions.
AGGCN adaptively learns graph structures by combining convolution-based node feature enhancement with a correlation-based measure of power spectral density similarity.
arXiv Detail & Related papers (2023-04-12T14:13:09Z) - HGIB: Prognosis for Alzheimer's Disease via Hypergraph Information
Bottleneck [3.8988556182958005]
We propose a novel hypergraph framework based on an information bottleneck strategy (HGIB)
Our framework seeks to discriminate irrelevant information, and therefore, solely focus on harmonising relevant information for future MCI conversion prediction.
We demonstrate, through extensive experiments on ADNI, that our proposed HGIB framework outperforms existing state-of-the-art hypergraph neural networks for Alzheimer's disease prognosis.
arXiv Detail & Related papers (2023-03-18T10:53:43Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - AMA-GCN: Adaptive Multi-layer Aggregation Graph Convolutional Network
for Disease Prediction [20.19380805655623]
We propose an encoder that automatically selects the appropriate phenotypic measures according to their spatial distribution.
We also propose a novel graph convolution network architecture using multi-layer aggregation mechanism.
arXiv Detail & Related papers (2021-06-16T12:13:23Z) - GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent
Inference [41.348451615460796]
We propose a novel semi-supervised approach named GKD based on knowledge distillation.
We perform experiments on two public datasets for diagnosing Autism spectrum disorder, and Alzheimer's disease.
According to these experiments, GKD outperforms the previous graph-based deep learning methods in terms of accuracy, AUC, and Macro F1.
arXiv Detail & Related papers (2021-04-08T08:23:37Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.