論文の概要: Multi-Year-to-Decadal Temperature Prediction using a Machine Learning Model-Analog Framework
- arxiv url: http://arxiv.org/abs/2502.17583v1
- Date: Mon, 24 Feb 2025 19:07:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:07.232799
- Title: Multi-Year-to-Decadal Temperature Prediction using a Machine Learning Model-Analog Framework
- Title(参考訳): 機械学習モデル-アナログフレームワークを用いた多年間温度予測
- Authors: M. A. Fernandez, Elizabeth A. Barnes,
- Abstract要約: 複数年ごとの気候予測は、潜在的な地域や地球規模の気候の将来を理解する上で重要なツールである。
本稿では,機械学習とアナログ予測を組み合わせて,これらの時間スケールの予測を行うフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.9096537342780928
- License:
- Abstract: Multi-year-to-decadal climate prediction is a key tool in understanding the range of potential regional and global climate futures. Here, we present a framework that combines machine learning and analog forecasting for predictions on these timescales. A neural network is used to learn a mask, specific to a region and lead time, with global weights based on relative importance as precursors to the evolution of that prediction target. A library of mask-weighted model states, or potential analogs, are then compared to a single mask-weighted observational state. The known future of the best matching potential analogs serve as the prediction for the future of the observational state. We match and predict 2-meter temperature using the Berkeley Earth Surface Temperature dataset for observations, and a set of CMIP6 models as the analog library. We find improved performance over traditional analog methods and initialized decadal predictions.
- Abstract(参考訳): 複数年ごとの気候予測は、潜在的な地域や地球規模の気候の将来を理解する上で重要なツールである。
本稿では、機械学習とアナログ予測を組み合わせて、これらの時間スケールの予測を行うフレームワークを提案する。
ニューラルネットワークは、地域固有のマスクとリードタイムを学習するために使用され、その予測対象の進化の前駆体としての相対的重要性に基づいたグローバルウェイトが使用される。
マスク重み付きモデル状態のライブラリ、または潜在的なアナログは、単一のマスク重み付き観測状態と比較される。
最高のマッチング可能なアナログの既知の未来は、観測状態の将来を予測するのに役立ちます。
観測のためにバークレー地球表面温度データセットとCMIP6モデルのセットを用いて,2mの温度をマッチングし,予測する。
従来のアナログ手法よりも性能が向上し,デケイダル予測が初期化される。
関連論文リスト
- Data driven weather forecasts trained and initialised directly from observations [1.44556167750856]
Skilful Machine Learned weather forecasts has challenged our approach to numerical weather prediction。
データ駆動システムは、過去の気象の長い歴史記録から学ぶことによって、将来の天気を予測するために訓練されている。
そこで我々は,ニューラルネットワークをトレーニングし,過去の観測から将来の天気を予測する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-22T12:23:26Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Predicting Temperature of Major Cities Using Machine Learning and Deep
Learning [0.0]
我々は,大都市における気温変化を構成するデイトン大学が作成したデータベースを用いて,将来いつでも異なる都市の気温を予測する。
この文書には、このような予測を行うための方法論が含まれています。
論文 参考訳(メタデータ) (2023-09-23T10:23:00Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting [10.083361616081874]
本研究では,機械学習モデル(ML)を時系列予測のための後処理ツールとして応用することを検討した。
相対湿度, 海面圧力, 地電位高さなど, タグ付き数値アンサンブル予測および観測データをML法に取り入れた。
回帰、量子レグレッション、tercile 分類タスクでは、線形モデル、ランダムフォレスト、畳み込みニューラルネットワーク、および積み重ねモデルを用いて検討する。
論文 参考訳(メタデータ) (2022-11-29T01:11:04Z) - Computing the ensemble spread from deterministic weather predictions
using conditional generative adversarial networks [0.0]
本稿では,深層学習アルゴリズムを用いて,アンサンブル予測システムの統計的特性を学習することを提案する。
訓練が終わると、将来のアンサンブル予測を得るためには、コストのかかるアンサンブル予測システムがもはや不要になる。
論文 参考訳(メタデータ) (2022-05-18T19:10:38Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
イタリアの32カ所の標高10mの風速計から観測された大量の風のデータセットを分析した。
我々は、過去の風の履歴を用いて教師あり学習アルゴリズムを訓練し、その価値を将来予測する。
最適設計と性能は場所によって異なることがわかった。
論文 参考訳(メタデータ) (2022-04-01T14:55:10Z) - A Bayesian Deep Learning Approach to Near-Term Climate Prediction [12.870804083819603]
気候予測に対する補完的な機械学習に基づくアプローチを追求する。
特に,Densenetアーキテクチャのフィードフォワード畳み込みネットワークは,予測能力において,畳み込みLSTMよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-23T00:28:36Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。