Flexible Counterfactual Explanations with Generative Models
- URL: http://arxiv.org/abs/2502.17613v1
- Date: Mon, 24 Feb 2025 20:01:04 GMT
- Title: Flexible Counterfactual Explanations with Generative Models
- Authors: Stig Hellemans, Andres Algaba, Sam Verboven, Vincent Ginis,
- Abstract summary: We introduce Flexible Counterfactual Explanations, a framework incorporating counterfactual templates.<n>FCEGAN align explanations with user-defined constraints without requiring model retraining or additional optimization.<n>Experiments across economic and healthcare datasets demonstrate that FCEGAN significantly improves counterfactual explanations' validity.
- Score: 1.3499500088995464
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Counterfactual explanations provide actionable insights to achieve desired outcomes by suggesting minimal changes to input features. However, existing methods rely on fixed sets of mutable features, which makes counterfactual explanations inflexible for users with heterogeneous real-world constraints. Here, we introduce Flexible Counterfactual Explanations, a framework incorporating counterfactual templates, which allows users to dynamically specify mutable features at inference time. In our implementation, we use Generative Adversarial Networks (FCEGAN), which align explanations with user-defined constraints without requiring model retraining or additional optimization. Furthermore, FCEGAN is designed for black-box scenarios, leveraging historical prediction datasets to generate explanations without direct access to model internals. Experiments across economic and healthcare datasets demonstrate that FCEGAN significantly improves counterfactual explanations' validity compared to traditional benchmark methods. By integrating user-driven flexibility and black-box compatibility, counterfactual templates support personalized explanations tailored to user constraints.
Related papers
- G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation [48.23263809469786]
We propose a framework using graph retrieval-augmented large language models (LLMs) for explainable recommendation.<n>G-Refer achieves superior performance compared with existing methods in both explainability and stability.
arXiv Detail & Related papers (2025-02-18T06:42:38Z) - Interpret the Internal States of Recommendation Model with Sparse Autoencoder [26.021277330699963]
RecSAE is an automatic, generalizable probing method for interpreting the internal states of Recommendation models.
We train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models.
We automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences.
arXiv Detail & Related papers (2024-11-09T08:22:31Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Introducing User Feedback-based Counterfactual Explanations (UFCE) [49.1574468325115]
Counterfactual explanations (CEs) have emerged as a viable solution for generating comprehensible explanations in XAI.
UFCE allows for the inclusion of user constraints to determine the smallest modifications in the subset of actionable features.
UFCE outperforms two well-known CE methods in terms of textitproximity, textitsparsity, and textitfeasibility.
arXiv Detail & Related papers (2024-02-26T20:09:44Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
We introduce LaPLACE-explainer, designed to provide probabilistic cause-and-effect explanations for machine learning models.
The LaPLACE-Explainer component leverages the concept of a Markov blanket to establish statistical boundaries between relevant and non-relevant features.
Our approach offers causal explanations and outperforms LIME and SHAP in terms of local accuracy and consistency of explained features.
arXiv Detail & Related papers (2023-10-01T04:09:59Z) - Flexible and Robust Counterfactual Explanations with Minimal Satisfiable
Perturbations [56.941276017696076]
We propose a conceptually simple yet effective solution named Counterfactual Explanations with Minimal Satisfiable Perturbations (CEMSP)
CEMSP constrains changing values of abnormal features with the help of their semantically meaningful normal ranges.
Compared to existing methods, we conduct comprehensive experiments on both synthetic and real-world datasets to demonstrate that our method provides more robust explanations while preserving flexibility.
arXiv Detail & Related papers (2023-09-09T04:05:56Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - CARE: Coherent Actionable Recourse based on Sound Counterfactual
Explanations [0.0]
This paper introduces CARE, a modular explanation framework that addresses the model- and user-level desiderata.
As a model-agnostic approach, CARE generates multiple, diverse explanations for any black-box model.
arXiv Detail & Related papers (2021-08-18T15:26:59Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.