論文の概要: A Generic Modelling Framework for Last-Mile Delivery Systems
- arxiv url: http://arxiv.org/abs/2502.17633v1
- Date: Mon, 24 Feb 2025 20:28:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:18:41.638336
- Title: A Generic Modelling Framework for Last-Mile Delivery Systems
- Title(参考訳): ラストミルデリバリーシステムのためのジェネリックモデリングフレームワーク
- Authors: Önder Gürcan, Timo Szczepanska, Vanja Falck, Patrycja Antosz, Merve Seher Cebeci, Michiel de Bok, Rodrigo Tapia, Lóránt Tavasszy,
- Abstract要約: 大規模ソーシャルデジタルツインニングプロジェクトは、複数の目的を持つ複雑なプロジェクトである。
本稿では,高レベルのアーキテクチャを提案し,汎用モデリングフレームワークの青写真を示す。
これには、データ適合性と互換性リスクに対処しながら、モジュール、入出力データ、相互接続を定義することが含まれる。
- 参考スコア(独自算出の注目度): 0.28106259549258145
- License:
- Abstract: Large-scale social digital twinning projects are complex with multiple objectives. For example, a social digital twinning platform for innovative last-mile delivery solutions may aim to assess consumer delivery method choices within their social environment. However, no single tool can achieve all objectives. Different simulators exist for consumer behavior and freight transport. Therefore, we propose a high-level architecture and present a blueprint for a generic modelling framework. This includes defining modules, input/output data, and interconnections, while addressing data suitability and compatibility risks. We demonstrate the framework's effectiveness with two real-world case studies.
- Abstract(参考訳): 大規模ソーシャルデジタルツインニングプロジェクトは、複数の目的を持つ複雑なプロジェクトである。
例えば、革新的なラストマイル配送ソリューションのためのソーシャルデジタルツインニングプラットフォームは、彼らの社会環境内でのコンシューマーデリバリー方法の選択を評価することを目的としている。
しかし、すべての目的を達成できるツールは1つもない。
消費者行動と貨物輸送のための異なるシミュレータが存在する。
そこで我々は,高レベルのアーキテクチャを提案し,汎用モデリングフレームワークの青写真を示す。
これには、データ適合性と互換性リスクに対処しながら、モジュール、入出力データ、相互接続を定義することが含まれる。
2つの実世界のケーススタディでフレームワークの有効性を実証する。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Towards Realistic Synthetic User-Generated Content: A Scaffolding Approach to Generating Online Discussions [17.96479268328824]
ユーザ生成コンテンツの現実的で大規模な合成データセット作成の実現可能性について検討する。
本稿では,議論スレッドのコンパクトな表現のアイデアに基づく多段階生成プロセスを提案する。
論文 参考訳(メタデータ) (2024-08-15T18:43:50Z) - FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects [55.77542145604758]
FoundationPoseは、6Dオブジェクトのポーズ推定と追跡のための統合基盤モデルである。
我々のアプローチは、微調整なしで、テスト時に新しいオブジェクトに即座に適用できる。
論文 参考訳(メタデータ) (2023-12-13T18:28:09Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
本稿では,物理に基づくメタバース合成により構築した大規模写真リアリスティックビンピックデータセットであるMetaGraspNetを紹介する。
提案データセットは,82種類の記事に対して217kのRGBD画像を含み,オブジェクト検出,アモーダル認識,キーポイント検出,操作順序,および並列ジャウと真空グリップパー用のアンビデクストグリップラベルの完全なアノテーションを備える。
また,2.3k以上の完全アノテートされた高品質なRGBD画像からなる実際のデータセットを5段階の難易度と,異なるオブジェクトおよびレイアウト特性を評価するための見えないオブジェクトセットに分割する。
論文 参考訳(メタデータ) (2022-08-08T08:15:34Z) - Towards Goal, Feasibility, and Diversity-Oriented Deep Generative Models
in Design [4.091593765662773]
我々は、パフォーマンス、実現可能性、多様性、目標達成を同時に最適化する最初のDeep Generative Modelを提案する。
異なるデータ型のスキュー・マルチモーダルデータを用いた多目的自転車フレーム設計問題に対して, 提案手法を検証した。
論文 参考訳(メタデータ) (2022-06-14T20:57:23Z) - Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction [31.02081143697431]
人間の軌道予測は、自動運転車、社会認識ロボット、およびビデオ監視アプリケーションの主要な構成要素である。
本稿では,過去の観測位置のみに作用する軽量な注意型リカレントバックボーンを提案する。
我々はU-Netアーキテクチャに基づく共通のゴールモジュールを使用し、シーン準拠の目的地を予測するために意味情報を抽出する。
論文 参考訳(メタデータ) (2022-04-25T11:12:37Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Mapping the Internet: Modelling Entity Interactions in Complex
Heterogeneous Networks [0.0]
サンプル表現、モデル定義、トレーニングのための汎用性のある統一フレームワークHMill'を提案します。
フレームワークに実装されたモデルによって実現されたすべての関数の集合に対する普遍近似定理の拡張を示す。
このフレームワークを使ってサイバーセキュリティドメインから3つの異なる問題を解決する。
論文 参考訳(メタデータ) (2021-04-19T21:32:44Z) - Enhanced Boundary Learning for Glass-like Object Segmentation [55.45473926510806]
本稿では,拡張境界学習によるガラス状物体分割問題を解くことを目的とする。
特に,より微細な境界キューを生成するための改良された微分モジュールを最初に提案する。
境界に沿った大域的な形状表現をモデル化するために,エッジ対応のグラフ畳み込みネットワークモジュールを提案する。
論文 参考訳(メタデータ) (2021-03-29T16:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。