Three-dimensional Meta-atoms for High Confinement of Mid-IR Radiation
- URL: http://arxiv.org/abs/2502.17654v1
- Date: Mon, 24 Feb 2025 21:03:32 GMT
- Title: Three-dimensional Meta-atoms for High Confinement of Mid-IR Radiation
- Authors: Francesco Pisani, Usama Iqbal, Laure Tailpied, Baptiste Fix, Isabelle Sagnes, Yanko Todorov,
- Abstract summary: We present the first experimental characterization of three-dimensional circuit-like resonators operating in the mid-infrared.<n>The design offers a high degree of flexibility, enabling precise control over the resonant frequency of the various modes supported by the resonator.<n>These meta-atoms are highly promising for applications in detectors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to confine photons into structures with highly sub-wavelength volumes is extremely interesting for many applications such as sensing, nonlinear optics, and strong light-matter interactions. However, their realization is increasingly difficult as the wavelength becomes shorter, due to fabrication challenges and increased metal losses. In this work, we present the first experimental characterization of three-dimensional circuit-like resonators operating in the mid-infrared. Through a combination of simulations, reflectivity measurements, and scanning near-field optical microscopy, we developed an analytical model capable of predicting the electromagnetic response of these structures based on their geometrical parameters. The design we studied offers a high degree of flexibility, enabling precise control over the resonant frequency of the various modes supported by the resonator, as well as independent control over radiative and non-radiative losses. Combined with the extreme field confinement demonstrated, these meta-atoms are highly promising for applications in detectors,
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Sculpting ultrastrong light-matter coupling through spatial matter
structuring [0.0]
We experimentally implement a novel strategy to sculpt ultrastrong multi-mode coupling.
We control the number of light-matter coupled modes, their octave-spanning frequency spectra, and their response to magnetic tuning.
This offers novel pathways for controlling dissipation, tailoring quantum light sources, nonlinearities, correlations, as well as entanglement in quantum information processing.
arXiv Detail & Related papers (2023-11-30T06:31:56Z) - Waveguide QED with Moessbauer Nuclei [0.0]
Thin-film nanostructures with embedded M"ossbauer nuclei have been successfully used for x-ray quantum optical applications.
Here we address theoretically a new geometry, in which hard x-rays are coupled in forward incidence.
We show that it combines aspects of both nuclear forward scattering, visible as dynamical beating in the grazing-temporal response, and the resonance structure from grazing incidence, visible in the spectrum of guided modes.
arXiv Detail & Related papers (2023-05-19T12:53:00Z) - Ultratight confinement of atoms in a Rydberg empowered optical lattice [0.0]
This article presents a novel approach for creating an atomic optical lattice with a sub-wavelength spatial structure.
The potential is generated by leveraging the nonlinear optical response of three-level Rydberg-dressed atoms.
The development of these ultra-narrow trapping techniques holds great promise for applications such as Rydberg-Fermi gates, atomtronics, quantum walks, Hubbard models, and neutral-atom quantum simulation.
arXiv Detail & Related papers (2023-01-11T13:12:53Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - All-optical probe of three-dimensional topological insulators based on
high-harmonic generation by circularly-polarized laser fields [3.2168123566725897]
We report the observation of a novel nonlinear optical response from the prototypical three-dimensional topological insulator Bi$$Se$_3$ through the process of high-order harmonic generation.
The implications are in ultrafast probing of topological phase transitions, light-field driven dissipationless electronics, and quantum computation.
arXiv Detail & Related papers (2021-09-30T17:35:10Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z) - Multidimensional synthetic chiral-tube lattices via nonlinear frequency
conversion [57.860179997051915]
We propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions.
We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs.
arXiv Detail & Related papers (2020-02-20T07:08:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.