Experimentally Informed Decoding of Stabilizer Codes Based on Syndrome Correlations
- URL: http://arxiv.org/abs/2502.17722v1
- Date: Mon, 24 Feb 2025 23:27:42 GMT
- Title: Experimentally Informed Decoding of Stabilizer Codes Based on Syndrome Correlations
- Authors: Ants Remm, Nathan Lacroix, Lukas Bödeker, Elie Genois, Christoph Hellings, François Swiadek, Graham J. Norris, Christopher Eichler, Alexandre Blais, Markus Müller, Sebastian Krinner, Andreas Wallraff,
- Abstract summary: We present an experimental approach guided by a novel analytical formula to characterize the probability of independent errors.<n>We use the method to find the optimal weights for a minimum-weight perfect matching decoder without relying on a theoretical error model.
- Score: 33.24167463060077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-fidelity decoding of quantum error correction codes relies on an accurate experimental model of the physical errors occurring in the device. Because error probabilities can depend on the context of the applied operations, the error model is ideally calibrated using the same circuit as is used for the error correction experiment. Here, we present an experimental approach guided by a novel analytical formula to characterize the probability of independent errors using correlations in the syndrome data generated by executing the error correction circuit. Using the method on a distance-three surface code, we analyze error channels that flip an arbitrary number of syndrome elements, including Pauli Y errors, hook errors, multi-qubit errors, and leakage, in addition to standard Pauli X and Z errors. We use the method to find the optimal weights for a minimum-weight perfect matching decoder without relying on a theoretical error model. Additionally, we investigate whether improved knowledge of the Pauli Y error channel, based on correlating the X- and Z-type error syndromes, can be exploited to enhance matching decoding. Furthermore, we find correlated errors that flip many syndrome elements over up-to-eight cycles, potentially caused by leakage of the data qubits out of the computational subspace. The presented method provides the tools for accurately calibrating a broad family of decoders, beyond the minimum-weight perfect matching decoder, without relying on prior knowledge of the error model.
Related papers
- Processing and Decoding Rydberg Decay Error with MBQC [5.154331853803125]
We present a novel approach to manage Rydberg decay errors in measurement-based quantum computation.
We leverage the inherent structure of topological cluster states and final leakage detection information to locate propagated errors from Rydberg decay error.
Results show a comparable performance within a modest R_e, which reveals possible application of our method in near-term platform.
arXiv Detail & Related papers (2024-11-07T12:49:55Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Generalized quantum data-syndrome codes and belief propagation decoding for phenomenological noise [6.322831694506286]
We introduce quantum data-syndrome codes along with a generalized check matrix that integrates both quaternary and binary alphabets to represent diverse error sources.<n>We observe that at high error rates, fewer rounds of syndrome extraction tend to perform better, while more rounds improve performance at lower error rates.
arXiv Detail & Related papers (2023-10-19T12:23:05Z) - Coherent errors and readout errors in the surface code [0.0]
We consider the combined effect of readout errors and coherent errors on the surface code.
We find a threshold for this combination of errors, with an error rate close to the threshold of the corresponding incoherent error channel.
arXiv Detail & Related papers (2023-03-08T15:50:44Z) - Witnessing entanglement in trapped-ion quantum error correction under
realistic noise [41.94295877935867]
Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits.
We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms.
We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks.
arXiv Detail & Related papers (2022-12-14T20:00:36Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
We present a framework for the reliability analysis of Conal Neural Networks (CNNs) via an error simulation engine.
These error models are defined based on the corruption patterns of the output of the CNN operators induced by faults.
We show that our methodology achieves about 99% accuracy of the fault effects w.r.t. SASSIFI, and a speedup ranging from 44x up to 63x w.r.t.FI, that only implements a limited set of error models.
arXiv Detail & Related papers (2022-06-04T19:45:02Z) - Error-rate-agnostic decoding of topological stabilizer codes [0.0]
We develop a decoder that depends on the bias, i.e., the relative probability of phase-flip to bit-flip errors, but is agnostic to error rate.
Our decoder is based on counting the number and effective weight of the most likely error chains in each equivalence class of a given syndrome.
arXiv Detail & Related papers (2021-12-03T15:45:12Z) - Efficient diagnostics for quantum error correction [0.0]
We present a scalable experimental approach based on Pauli error reconstruction to predict the performance of codes.
Numerical evidence demonstrates that our method significantly outperforms predictions based on standard error metrics for various error models.
arXiv Detail & Related papers (2021-08-24T16:28:29Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.