Coherent errors and readout errors in the surface code
- URL: http://arxiv.org/abs/2303.04672v3
- Date: Wed, 13 Sep 2023 14:29:20 GMT
- Title: Coherent errors and readout errors in the surface code
- Authors: \'Aron M\'arton, J\'anos K. Asb\'oth
- Abstract summary: We consider the combined effect of readout errors and coherent errors on the surface code.
We find a threshold for this combination of errors, with an error rate close to the threshold of the corresponding incoherent error channel.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the combined effect of readout errors and coherent errors, i.e.,
deterministic phase rotations, on the surface code. We use a recently developed
numerical approach, via a mapping of the physical qubits to Majorana fermions.
We show how to use this approach in the presence of readout errors, treated on
the phenomenological level: perfect projective measurements with potentially
incorrectly recorded outcomes, and multiple repeated measurement rounds. We
find a threshold for this combination of errors, with an error rate close to
the threshold of the corresponding incoherent error channel (random Pauli-Z and
readout errors). The value of the threshold error rate, using the worst case
fidelity as the measure of logical errors, is 2.6%. Below the threshold,
scaling up the code leads to the rapid loss of coherence in the logical-level
errors, but error rates that are greater than those of the corresponding
incoherent error channel. We also vary the coherent and readout error rates
independently, and find that the surface code is more sensitive to coherent
errors than to readout errors. Our work extends the recent results on coherent
errors with perfect readout to the experimentally more realistic situation
where readout errors also occur.
Related papers
- A Coin Has Two Sides: A Novel Detector-Corrector Framework for Chinese Spelling Correction [79.52464132360618]
Chinese Spelling Correction (CSC) stands as a foundational Natural Language Processing (NLP) task.
We introduce a novel approach based on error detector-corrector framework.
Our detector is designed to yield two error detection results, each characterized by high precision and recall.
arXiv Detail & Related papers (2024-09-06T09:26:45Z) - Bounding the systematic error in quantum error mitigation due to model violation [0.0]
We develop a methodology to efficiently compute upper bounds on the impact of error-model inaccuracy in error mitigation.
Our protocols require no additional experiments, and instead rely on comparisons between the error model and the error-learning data.
We show that our estimated upper bounds are typically close to the worst observed performance of error mitigation on random circuits.
arXiv Detail & Related papers (2024-08-20T16:27:00Z) - Subsystem surface and compass code sensitivities to non-identical
infidelity distributions on heavy-hex lattice [0.0]
We investigate how the logical error rate depends on parameters of the noise distribution for the subsystem surface code and the compass code.
The average logical error rate depends on the average of the physical qubit infidelity distribution without sensitivity to higher moments.
A decoder that is aware of location specific error rates modestly improves the logical error rate.
arXiv Detail & Related papers (2024-02-13T04:05:50Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
We show that a "dual-rail qubit" consisting of a pair of resonantly coupled transmons can form a highly coherent erasure qubit.
We demonstrate mid-circuit detection of erasure errors while introducing $ 0.1%$ dephasing error per check.
This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.
arXiv Detail & Related papers (2023-07-17T18:00:01Z) - Randomized compiling in fault-tolerant quantum computation [0.0]
We present an algorithm projecting the state of the system onto a logical state with a well-defined error.
The algorithm does not significantly increase the depth of the logical circuit.
arXiv Detail & Related papers (2023-06-23T19:17:34Z) - Lattice gauge theory and topological quantum error correction with
quantum deviations in the state preparation and error detection [0.0]
We focus on the topological surface code, and study the case when the code suffers from both noise and coherent noise on the multi-qubit entanglement gates.
We conclude that this type of unavoidable coherent errors could have a fatal impact on the error correction performance.
arXiv Detail & Related papers (2023-01-30T13:12:41Z) - Effect of quantum error correction on detection-induced coherent errors [0.0]
We study the performance of quantum error correction codes (QECC) under the detection-induced coherent error.
We find that the detection-induced coherent error will result in undetected error terms, which will accumulate and evolve into logical errors.
arXiv Detail & Related papers (2021-07-19T15:42:04Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - On the Robustness of Language Encoders against Grammatical Errors [66.05648604987479]
We collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data.
Results confirm that the performance of all tested models is affected but the degree of impact varies.
arXiv Detail & Related papers (2020-05-12T11:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.