論文の概要: Scaling LLM Pre-training with Vocabulary Curriculum
- arxiv url: http://arxiv.org/abs/2502.17910v1
- Date: Tue, 25 Feb 2025 07:18:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:23:23.224048
- Title: Scaling LLM Pre-training with Vocabulary Curriculum
- Title(参考訳): 語彙カリキュラムによるLDM事前学習のスケールアップ
- Authors: Fangyuan Yu,
- Abstract要約: 本稿では,語彙サイズに対して,対数線形スケーリングゲインによる事前学習効率を向上させる手法である語彙カリキュラム学習を導入する。
提案手法は,エントロピー誘導語彙拡張とモデル最適化を交互に行い,多様なトークン化粒度にまたがる変換可能な表現を学習する。
小規模GPTモデルによる実験により,スケーリング効率が向上し,動的トークン化の有効性が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Modern language models rely on static vocabularies, fixed before pretraining, in contrast to the adaptive vocabulary acquisition observed in human language learning. To bridge this gap, we introduce vocabulary curriculum learning, an approach that improves pretraining efficiency with log-linear scaling gains relative to vocabulary size. Our method alternates between entropy-guided vocabulary expansion and model optimization, enabling models to learn transferable representations across diverse tokenization granularities. This approach naturally gives rise to an optimal computation allocation pattern: longer tokens capture predictable content, while shorter tokens focus on more complex, harder-to-predict contexts. Experiments on small-scale GPT models demonstrate improved scaling efficiency, reinforcing the effectiveness of dynamic tokenization. We release our code to support further research and plan to extend our experiments to larger models and diverse domains.
- Abstract(参考訳): 現代の言語モデルは、人間の言語学習で見られる適応的な語彙獲得とは対照的に、事前訓練前に固定された静的語彙に依存している。
このギャップを埋めるため,語彙学習を導入し,対数線形スケーリングによる事前学習効率を向上させる手法を提案する。
提案手法は,エントロピー誘導語彙拡張とモデル最適化を交互に行い,多様なトークン化粒度にまたがる変換可能な表現を学習する。
より長いトークンは予測可能なコンテンツをキャプチャし、短いトークンはより複雑で予測が難しいコンテキストにフォーカスする。
小規模GPTモデルによる実験により,スケーリング効率が向上し,動的トークン化の有効性が向上した。
我々は、さらなる研究を支援するためにコードをリリースし、実験をより大きなモデルや多様なドメインに拡張する計画を立てています。
関連論文リスト
- Over-Tokenized Transformer: Vocabulary is Generally Worth Scaling [10.985444895887207]
本稿では,言語モデリング性能を向上させるために,入力語彙と出力語彙を分離するフレームワークであるOver-Tokenized Transformersを紹介する。
入力語彙サイズとトレーニング損失の関係を明らかにすることで,より大きな入力語彙がモデル性能を継続的に向上することを示す。
本研究は, スケーリング法則におけるトークン化の重要性を強調し, トークン化設計の実践的洞察を提供するものである。
論文 参考訳(メタデータ) (2025-01-28T14:15:42Z) - Large Vocabulary Size Improves Large Language Models [28.83786065307658]
単語語彙サイズと大規模言語モデル(LLM)の性能の関係について検討する。
実験結果から,LLMの語彙サイズが大きくなると性能が向上することがわかった。
事前定義された語彙の代わりに新しい語彙を使用するための簡単な方法を導入する。
論文 参考訳(メタデータ) (2024-06-24T10:27:07Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$は、視覚条件付き言語生成モデルの事前トレーニング用に設計されたフレームワークである。
提案手法は,視覚言語モデルの学習を5倍に加速させるが,全体的な性能に顕著な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-10-05T03:40:06Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Better Language Model with Hypernym Class Prediction [101.8517004687825]
クラスベース言語モデル (LM) は、コンテキストの疎結合に$n$-gramのLMで対処するために長年開発されてきた。
本研究では,このアプローチをニューラルLMの文脈で再考する。
論文 参考訳(メタデータ) (2022-03-21T01:16:44Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
非パラメトリックニューラルネットワークモデル(NLM)は、外部データストアを用いてテキストの予測分布を学習する。
比較性能を維持しながら、推論速度の最大6倍の高速化を実現する方法を示す。
論文 参考訳(メタデータ) (2021-09-09T12:32:28Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
自然言語処理のためのトランスファーラーニングとアクティブラーニングの最近の進歩は、必要なアノテーション予算を大幅に削減する可能性を開く。
我々は,様々なベイズ不確実性推定手法とモンテカルロドロップアウトオプションの実験的研究を,アクティブ学習フレームワークで実施する。
また, 能動学習中にインスタンスを取得するためには, 完全サイズのトランスフォーマーを蒸留版に置き換えることにより, 計算性能が向上することを示した。
論文 参考訳(メタデータ) (2021-01-20T13:59:25Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。