論文の概要: Unmasking Gender Bias in Recommendation Systems and Enhancing Category-Aware Fairness
- arxiv url: http://arxiv.org/abs/2502.17921v1
- Date: Tue, 25 Feb 2025 07:37:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:23:51.847933
- Title: Unmasking Gender Bias in Recommendation Systems and Enhancing Category-Aware Fairness
- Title(参考訳): レコメンデーションシステムにおけるジェンダーバイアスの非マスク化とカテゴリー認識フェアネスの促進
- Authors: Tahsin Alamgir Kheya, Mohamed Reda Bouadjenek, Sunil Aryal,
- Abstract要約: 我々は、レコメンデーションにおけるジェンダーバイアスのための総合的な指標のセットを紹介する。
より粒度の高いレベルで公平さを評価することの重要性を示す。
モデル出力のバイアスを効果的に最小化するために,カテゴリー認識公正度尺度を正規化用語として,トレーニング中の主な推奨損失と組み合わせることで有効であることを示す。
- 参考スコア(独自算出の注目度): 2.124791625488617
- License:
- Abstract: Recommendation systems are now an integral part of our daily lives. We rely on them for tasks such as discovering new movies, finding friends on social media, and connecting job seekers with relevant opportunities. Given their vital role, we must ensure these recommendations are free from societal stereotypes. Therefore, evaluating and addressing such biases in recommendation systems is crucial. Previous work evaluating the fairness of recommended items fails to capture certain nuances as they mainly focus on comparing performance metrics for different sensitive groups. In this paper, we introduce a set of comprehensive metrics for quantifying gender bias in recommendations. Specifically, we show the importance of evaluating fairness on a more granular level, which can be achieved using our metrics to capture gender bias using categories of recommended items like genres for movies. Furthermore, we show that employing a category-aware fairness metric as a regularization term along with the main recommendation loss during training can help effectively minimize bias in the models' output. We experiment on three real-world datasets, using five baseline models alongside two popular fairness-aware models, to show the effectiveness of our metrics in evaluating gender bias. Our metrics help provide an enhanced insight into bias in recommended items compared to previous metrics. Additionally, our results demonstrate how incorporating our regularization term significantly improves the fairness in recommendations for different categories without substantial degradation in overall recommendation performance.
- Abstract(参考訳): 現在、レコメンデーションシステムは私たちの日常生活の不可欠な部分です。
我々は、新しい映画を見つけること、ソーシャルメディア上の友人を見つけること、求職者と関連する機会を結びつけることなど、それらを頼りにしている。
彼らの重要な役割を考えると、これらのレコメンデーションは社会的ステレオタイプから解放されなければならない。
したがって、レコメンデーションシステムにおけるそのようなバイアスの評価と対処が重要である。
推奨項目の公平性を評価するこれまでの作業は、主に異なるセンシティブなグループのパフォーマンス指標を比較することに集中するため、特定のニュアンスを捉えられなかった。
本稿では,レコメンデーションにおけるジェンダーバイアスの定量化のための包括的指標について紹介する。
具体的には、映画ジャンルなどの推奨項目のカテゴリを用いて性別偏差を捉えるために、より粒度の高いレベルでの公平さを評価することの重要性を示す。
さらに, モデル出力のバイアスを効果的に最小化するために, カテゴリー認識公正度測定を正規化用語として, トレーニング中の主な推奨損失と組み合わせることで, モデル出力のバイアスを効果的に最小化できることを示す。
我々は,5つのベースラインモデルと2つの人気フェアネス認識モデルを用いて,実世界の3つのデータセットを実験し,性別バイアスを評価する上での指標の有効性を示した。
私たちのメトリクスは、推奨項目のバイアスに関する洞察を、以前のメトリクスと比較する上で役立ちます。
さらに,本研究の結果は,レギュラー化という用語を取り入れることで,総合的なレコメンデーション性能を著しく低下させることなく,様々なカテゴリーのレコメンデーションの公平性を著しく向上させることを示した。
関連論文リスト
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
我々はトランスジェンダー、ノンバイナリ、その他のジェンダー・ディバースのアイデンティティを中心とし、アライメント手順が既存のジェンダー・ディバースバイアスとどのように相互作用するかを検討する。
以上の結果から,DPO対応モデルは特に教師付き微調整に敏感であることが示唆された。
DPOとより広範なアライメントプラクティスに合わせたレコメンデーションで締めくくります。
論文 参考訳(メタデータ) (2024-11-06T06:50:50Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
大規模言語モデル(LLM)は、自然言語生成において顕著な能力を示してきたが、社会的バイアスを増大させることも観察されている。
GenderCAREは、革新的な基準、バイアス評価、リダクションテクニック、評価メトリクスを含む包括的なフレームワークである。
論文 参考訳(メタデータ) (2024-08-22T15:35:46Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
画像キャプションタスクのためのモデルに基づく評価指標において、性別バイアスの体系的研究を行う。
偏りのある世代と偏りのない世代を区別できないことを含む、これらの偏りのあるメトリクスを使用することによる負の結果を実証する。
人間の判断と相関を損なうことなく、測定バイアスを緩和する簡便で効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T04:27:40Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
協調フィルタリングに基づくレコメンデーションは、すべてのユーザの過去の行動データからユーザの好みを学習し、意思決定を容易にするために人気がある。
ユーザの敏感な属性に応じて異なるユーザグループに対して等しく機能しない場合には,レコメンダシステムは不公平であると考えられる。
本稿では,データ拡張の観点から,レコメンデーションフェアネスを改善する方法について検討する。
論文 参考訳(メタデータ) (2023-02-13T13:11:46Z) - Equal Experience in Recommender Systems [21.298427869586686]
我々は、バイアスデータの存在下で不公平を規制するために、新しい公正の概念(平等な経験と呼ぶ)を導入する。
本稿では、正規化項としての公正性の概念を取り入れた最適化フレームワークを提案し、最適化を解く計算効率の良いアルゴリズムを導入する。
論文 参考訳(メタデータ) (2022-10-12T05:53:05Z) - Experiments on Generalizability of User-Oriented Fairness in Recommender
Systems [2.0932879442844476]
公正を意識した推薦システムは、異なるユーザーグループを同様に扱うことを目的としている。
本稿では,ユーザ中心の公平度を再評価するフレームワークを提案する。
我々は、ユーザ(NDCGなど)とアイテム(新規性、アイテムフェアネスなど)の両方から、フレームワークの再ランク付けによる最終的なレコメンデーションを評価する。
論文 参考訳(メタデータ) (2022-05-17T12:36:30Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
アルゴリズムをランク付けする偏見のない学習は、候補をアピールし、既に単一の分類ラベルを持つ多くのアプリケーションに適用されている。
本稿では,この課題に対処するための新しい非バイアス付きLTRアルゴリズムを提案する。
パブリックベンチマークデータセットと内部ライブトラフィックを用いた実験結果から,分類ラベルと連続ラベルのいずれにおいても提案手法の優れた結果が得られた。
論文 参考訳(メタデータ) (2021-11-25T06:04:59Z) - Revisiting Popularity and Demographic Biases in Recommender Evaluation
and Effectiveness [6.210698627561645]
我々は,人気や人口統計によって,レコメンダのパフォーマンスがどう変化するかを検討する。
年齢,性別ともに,推奨者のパフォーマンスに統計的に有意な差が認められた。
我々は、推奨ユーティリティが高齢ユーザーにとって着実に低下し、女性にとっては男性よりも低いことを観察する。
論文 参考訳(メタデータ) (2021-10-15T20:30:51Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z) - Opportunistic Multi-aspect Fairness through Personalized Re-ranking [5.8562079474220665]
複数の公正度次元にわたる個人の嗜好を学習するフェアネス・アウェア・レコメンデーションに対する再ランクのアプローチを提案する。
我々は,我々の正当性とメートル法に依存しないアプローチが,従来よりも正確性と公平性の間のトレードオフを良好に達成していることを示す。
論文 参考訳(メタデータ) (2020-05-21T04:25:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。