Optimal Brain Apoptosis
- URL: http://arxiv.org/abs/2502.17941v2
- Date: Mon, 03 Mar 2025 12:00:57 GMT
- Title: Optimal Brain Apoptosis
- Authors: Mingyuan Sun, Zheng Fang, Jiaxu Wang, Junjie Jiang, Delei Kong, Chenming Hu, Yuetong Fang, Renjing Xu,
- Abstract summary: This paper builds on the foundational work of Optimal Brain Damage (OBD) by advancing the methodology of parameter importance estimation using the Hessian matrix.<n>We introduce Optimal Brain Apoptosis (OBA), a novel pruning method that calculates the Hessian-vector product value directly for each parameter.<n>This approach allows for a more precise pruning process, particularly in the context of CNNs and Transformers, as validated in our experiments.
- Score: 4.780105454349552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity and parameter count of Convolutional Neural Networks (CNNs) and Transformers pose challenges in terms of computational efficiency and resource demands. Pruning has been identified as an effective strategy to address these challenges by removing redundant elements such as neurons, channels, or connections, thereby enhancing computational efficiency without heavily compromising performance. This paper builds on the foundational work of Optimal Brain Damage (OBD) by advancing the methodology of parameter importance estimation using the Hessian matrix. Unlike previous approaches that rely on approximations, we introduce Optimal Brain Apoptosis (OBA), a novel pruning method that calculates the Hessian-vector product value directly for each parameter. By decomposing the Hessian matrix across network layers and identifying conditions under which inter-layer Hessian submatrices are non-zero, we propose a highly efficient technique for computing the second-order Taylor expansion of parameters. This approach allows for a more precise pruning process, particularly in the context of CNNs and Transformers, as validated in our experiments including VGG19, ResNet32, ResNet50, and ViT-B/16 on CIFAR10, CIFAR100 and Imagenet datasets. Our code is available at https://github.com/NEU-REAL/OBA.
Related papers
- Optuna vs Code Llama: Are LLMs a New Paradigm for Hyperparameter Tuning? [42.362388367152256]
Large language models (LLMs) are used to fine-tune a parameter-efficient version of Code Llama using LoRA.
Our method achieves competitive or superior results in terms of Root Mean Square Error (RMSE) while significantly reducing computational overhead.
arXiv Detail & Related papers (2025-04-08T13:15:47Z) - PABBO: Preferential Amortized Black-Box Optimization [24.019185659134294]
Preferential Bayesian Optimization (PBO) is a sample-efficient method to learn latent user utilities from preferential feedback over a pair of designs.
We propose to circumvent this issue by fully amortizing PBO, meta-learning both the surrogate and the acquisition function.
Our method is several orders of magnitude faster than the usual Gaussian process-based strategies and often outperforms them in accuracy.
arXiv Detail & Related papers (2025-03-02T14:57:24Z) - Pruning By Explaining Revisited: Optimizing Attribution Methods to Prune CNNs and Transformers [14.756988176469365]
An effective approach to reduce computational requirements and increase efficiency is to prune unnecessary components of Deep Neural Networks.
Previous work has shown that attribution methods from the field of eXplainable AI serve as effective means to extract and prune the least relevant network components in a few-shot fashion.
arXiv Detail & Related papers (2024-08-22T17:35:18Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - ADC/DAC-Free Analog Acceleration of Deep Neural Networks with Frequency
Transformation [2.7488316163114823]
This paper proposes a novel approach to an energy-efficient acceleration of frequency-domain neural networks by utilizing analog-domain frequency-based tensor transformations.
Our approach achieves more compact cells by eliminating the need for trainable parameters in the transformation matrix.
On a 16$times$16 crossbars, for 8-bit input processing, the proposed approach achieves the energy efficiency of 1602 tera operations per second per Watt.
arXiv Detail & Related papers (2023-09-04T19:19:39Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Sample-Then-Optimize Batch Neural Thompson Sampling [50.800944138278474]
We introduce two algorithms for black-box optimization based on the Thompson sampling (TS) policy.
To choose an input query, we only need to train an NN and then choose the query by maximizing the trained NN.
Our algorithms sidestep the need to invert the large parameter matrix yet still preserve the validity of the TS policy.
arXiv Detail & Related papers (2022-10-13T09:01:58Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - SHINE: SHaring the INverse Estimate from the forward pass for bi-level
optimization and implicit models [15.541264326378366]
In recent years, implicit deep learning has emerged as a method to increase the depth of deep neural networks.
The training is performed as a bi-level problem, and its computational complexity is partially driven by the iterative inversion of a huge Jacobian matrix.
We propose a novel strategy to tackle this computational bottleneck from which many bi-level problems suffer.
arXiv Detail & Related papers (2021-06-01T15:07:34Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
We study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes.
Our goal is to misclassify a specific sample into a target class without any sample modification.
By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem.
arXiv Detail & Related papers (2021-02-21T03:13:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.