Automatic and effective discovery of quantum kernels
- URL: http://arxiv.org/abs/2209.11144v3
- Date: Thu, 26 Dec 2024 11:43:26 GMT
- Title: Automatic and effective discovery of quantum kernels
- Authors: Massimiliano Incudini, Daniele Lizzio Bosco, Francesco Martini, Michele Grossi, Giuseppe Serra, Alessandra Di Pierro,
- Abstract summary: Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
- Score: 41.61572387137452
- License:
- Abstract: Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data. Quantum kernels are able to capture relationships in the data that are not efficiently computable on classical devices. However, there is no straightforward method to engineer the optimal quantum kernel for each specific use case. We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML, to automatically find an optimal kernel in a heuristic manner. To this purpose we define an algorithm for constructing a quantum circuit implementing the similarity measure as a combinatorial object, which is evaluated based on a cost function and then iteratively modified using a meta-heuristic optimization technique. The cost function can encode many criteria ensuring favorable statistical properties of the candidate solution, such as the rank of the Dynamical Lie Algebra. Importantly, our approach is independent of the optimization technique employed. The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach, showing the potential of our technique to deliver superior results with reduced effort.
Related papers
- Efficient Online Quantum Circuit Learning with No Upfront Training [1.0159681653887238]
We propose a surrogate-based method for optimizing parameterized quantum circuits with few calls to a quantum computer.
For 16-qubit random 3-regular Max-Cut problems solved using the QAOA ansatz, we find that our method outperforms the prior state of the art.
arXiv Detail & Related papers (2025-01-08T17:30:45Z) - Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
We study the projective quantum eigensolver (PQE) approach to optimizing unitary coupled cluster wave functions on quantum hardware.
The algorithm uses projections of the Schr"odinger equation to efficiently bring the trial state closer to an eigenstate of the Hamiltonian.
We present numerical evidence of superiority over both the optimization introduced in arXiv:2102.00345 and VQE optimized using the Broyden Fletcher Goldfarb Shanno (BFGS) method.
arXiv Detail & Related papers (2024-10-19T15:03:59Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Surrogate-based optimization for variational quantum algorithms [0.0]
Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers.
We introduce the idea of learning surrogate models for variational circuits using few experimental measurements.
We then perform parameter optimization using these models as opposed to the original data.
arXiv Detail & Related papers (2022-04-12T00:15:17Z) - Stochastic optimization algorithms for quantum applications [0.0]
We review the use of first-order, second-order, and quantum natural gradient optimization methods, and propose new algorithms defined in the field of complex numbers.
The performance of all methods is evaluated by means of their application to variational quantum eigensolver, quantum control of quantum states, and quantum state estimation.
arXiv Detail & Related papers (2022-03-11T16:17:05Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.