論文の概要: Model-Free Adversarial Purification via Coarse-To-Fine Tensor Network Representation
- arxiv url: http://arxiv.org/abs/2502.17972v1
- Date: Tue, 25 Feb 2025 08:45:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:47.809711
- Title: Model-Free Adversarial Purification via Coarse-To-Fine Tensor Network Representation
- Title(参考訳): 粗大なテンソルネットワーク表現によるモデルフリー逆処理
- Authors: Guang Lin, Duc Thien Nguyen, Zerui Tao, Konstantinos Slavakis, Toshihisa Tanaka, Qibin Zhao,
- Abstract要約: ディープニューラルネットワークは、よく設計された敵攻撃に弱いことが知られている。
本稿では, 特殊設計テンソルネットワーク分解アルゴリズムを用いて, モデルレス逆浄化法を提案する。
本手法は,様々な標準的脅威,攻撃タイプ,タスクを効果的に一般化する。
- 参考スコア(独自算出の注目度): 27.016302505571048
- License:
- Abstract: Deep neural networks are known to be vulnerable to well-designed adversarial attacks. Although numerous defense strategies have been proposed, many are tailored to the specific attacks or tasks and often fail to generalize across diverse scenarios. In this paper, we propose Tensor Network Purification (TNP), a novel model-free adversarial purification method by a specially designed tensor network decomposition algorithm. TNP depends neither on the pre-trained generative model nor the specific dataset, resulting in strong robustness across diverse adversarial scenarios. To this end, the key challenge lies in relaxing Gaussian-noise assumptions of classical decompositions and accommodating the unknown distribution of adversarial perturbations. Unlike the low-rank representation of classical decompositions, TNP aims to reconstruct the unobserved clean examples from an adversarial example. Specifically, TNP leverages progressive downsampling and introduces a novel adversarial optimization objective to address the challenge of minimizing reconstruction error but without inadvertently restoring adversarial perturbations. Extensive experiments conducted on CIFAR-10, CIFAR-100, and ImageNet demonstrate that our method generalizes effectively across various norm threats, attack types, and tasks, providing a versatile and promising adversarial purification technique.
- Abstract(参考訳): ディープニューラルネットワークは、よく設計された敵攻撃に弱いことが知られている。
多くの防衛戦略が提案されているが、その多くは特定の攻撃やタスクに合わせており、様々なシナリオにまたがる一般化に失敗することが多い。
本稿では,特殊設計テンソルネットワーク分解アルゴリズムを用いて,新しいモデルのない対角浄化法であるTensor Network Purification (TNP)を提案する。
TNPは、事前訓練された生成モデルにも特定のデータセットにも依存せず、様々な対立するシナリオにおいて強い堅牢性をもたらす。
この目的のために、鍵となる課題は、古典的な分解のガウス・ノイズ仮定を緩和し、未知の逆摂動の分布を調節することである。
古典的な分解の低ランク表現とは異なり、TNPは敵の例から観測されていないクリーンな例を再構成することを目的としている。
具体的には、TNPはプログレッシブ・ダウンサンプリングを活用し、再構成誤差を最小限に抑えるという課題に対処する新しい対向最適化目標を導入するが、必然的に対向的摂動を回復しない。
CIFAR-10, CIFAR-100, ImageNetで実施した広範囲な実験により, 本手法は様々な標準的脅威, 攻撃タイプ, タスクを効果的に一般化し, 汎用的で有望な対向浄化技術を提供することを示した。
関連論文リスト
- Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning [24.10329164911317]
多重漸近正規分布攻撃(MultiANDA)という手法を提案する。
我々は勾配上昇(SGA)の正規性を利用して摂動の後方分布を近似する。
提案手法は、防御の有無にかかわらず、ディープラーニングモデルに対する10の最先端のブラックボックス攻撃より優れる。
論文 参考訳(メタデータ) (2022-09-24T08:57:10Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
ディープニューラルネットワーク(DNN)の堅牢性を改善するために、AT(Adversarial Training)がよく用いられる。
本研究では,ジャコビアンノルムと選択的入力勾配正規化(J-SIGR)に基づくアプローチを提案する。
実験により、提案したJ-SIGRは、転送された敵攻撃に対するロバスト性を向上し、ニューラルネットワークからの予測が容易に解釈できることが示されている。
論文 参考訳(メタデータ) (2022-07-09T01:06:41Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Towards Compositional Adversarial Robustness: Generalizing Adversarial
Training to Composite Semantic Perturbations [70.05004034081377]
まず,合成逆数例を生成する新しい手法を提案する。
本手法は, コンポーネントワイド射影勾配勾配を利用して最適攻撃組成を求める。
次に,モデルロバスト性を$ell_p$-ballから複合意味摂動へ拡張するための一般化逆トレーニング(GAT)を提案する。
論文 参考訳(メタデータ) (2022-02-09T02:41:56Z) - Adversarial Attack via Dual-Stage Network Erosion [7.28871533402894]
ディープニューラルネットワークは敵の例に弱いため、微妙な摂動を加えることでディープモデルを騙すことができる。
本稿では, 既存モデルに2段階の特徴レベル摂動を適用し, 多様なモデルの集合を暗黙的に生成する手法を提案する。
我々は、非残留ネットワークと残留ネットワークの両方で包括的な実験を行い、最先端の計算手法と同様の計算コストで、より伝達可能な逆の例を得る。
論文 参考訳(メタデータ) (2022-01-01T02:38:09Z) - Defensive Tensorization [113.96183766922393]
本稿では,ネットワークの遅延高次分解を利用した対角防御手法であるテンソル防御手法を提案する。
我々は,標準画像分類ベンチマークにおけるアプローチの有効性を実証的に実証した。
我々は,音声タスクとバイナリネットワークを考慮し,ドメイン間のアプローチと低精度アーキテクチャの汎用性を検証した。
論文 参考訳(メタデータ) (2021-10-26T17:00:16Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - Improving Transformation-based Defenses against Adversarial Examples
with First-order Perturbations [16.346349209014182]
研究によると、ニューラルネットワークは敵の攻撃を受けやすい。
これにより、ニューラルネットワークベースのインテリジェントシステムに対する潜在的な脅威が露呈する。
本稿では, 対向性強靭性を改善するために, 対向性摂動に対処する手法を提案する。
論文 参考訳(メタデータ) (2021-03-08T06:27:24Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。