Generalized Decision Focused Learning under Imprecise Uncertainty--Theoretical Study
- URL: http://arxiv.org/abs/2502.17984v1
- Date: Tue, 25 Feb 2025 08:53:02 GMT
- Title: Generalized Decision Focused Learning under Imprecise Uncertainty--Theoretical Study
- Authors: Keivan Shariatmadar, Neil Yorke-Smith, Ahmad Osman, Fabio Cuzzolin, Hans Hallez, David Moens,
- Abstract summary: Decision Focused Learning has emerged as a critical paradigm for integrating machine learning with downstream optimisation.<n>Existing methodologies predominantly rely on probabilistic models and focus narrowly on task objectives.<n>This paper bridges these gaps by introducing innovative frameworks.
- Score: 6.137404366514538
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Decision Focused Learning has emerged as a critical paradigm for integrating machine learning with downstream optimisation. Despite its promise, existing methodologies predominantly rely on probabilistic models and focus narrowly on task objectives, overlooking the nuanced challenges posed by epistemic uncertainty, non-probabilistic modelling approaches, and the integration of uncertainty into optimisation constraints. This paper bridges these gaps by introducing innovative frameworks: (i) a non-probabilistic lens for epistemic uncertainty representation, leveraging intervals (the least informative uncertainty model), Contamination (hybrid model), and probability boxes (the most informative uncertainty model); (ii) methodologies to incorporate uncertainty into constraints, expanding Decision-Focused Learning's utility in constrained environments; (iii) the adoption of Imprecise Decision Theory for ambiguity-rich decision-making contexts; and (iv) strategies for addressing sparse data challenges. Empirical evaluations on benchmark optimisation problems demonstrate the efficacy of these approaches in improving decision quality and robustness and dealing with said gaps.
Related papers
- Uncertainty Quantification and Causal Considerations for Off-Policy Decision Making [4.514386953429771]
Off-policy evaluation (OPE) seeks to assess the performance of a new policy using data collected under a different policy.<n>Existing OPE methodologies suffer from several limitations arising from statistical uncertainty as well as causal considerations.<n>We introduce the Marginal Ratio (MR) estimator, a novel OPE method that reduces variance by focusing on the marginal distribution of outcomes.<n>Next, we propose Conformal Off-Policy Prediction (COPP), a principled approach for uncertainty quantification in OPE.<n>Finally, we address causal unidentifiability in off-policy decision-making by developing novel bounds for sequential decision settings
arXiv Detail & Related papers (2025-02-09T20:05:19Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Self-Improving Interference Management Based on Deep Learning With
Uncertainty Quantification [10.403513606082067]
This paper presents a self-improving interference management framework tailored for wireless communications.
Our approach addresses the computational challenges inherent in traditional optimization-based algorithms.
A breakthrough of our framework is its acknowledgment of the limitations inherent in data-driven models.
arXiv Detail & Related papers (2024-01-24T03:28:48Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Explaining by Imitating: Understanding Decisions by Interpretable Policy
Learning [72.80902932543474]
Understanding human behavior from observed data is critical for transparency and accountability in decision-making.
Consider real-world settings such as healthcare, in which modeling a decision-maker's policy is challenging.
We propose a data-driven representation of decision-making behavior that inheres transparency by design, accommodates partial observability, and operates completely offline.
arXiv Detail & Related papers (2023-10-28T13:06:14Z) - Probabilistic Constrained Reinforcement Learning with Formal Interpretability [2.990411348977783]
We propose a novel Adaptive Wasserstein Variational Optimization, namely AWaVO, to tackle these interpretability challenges.
Our approach uses formal methods to achieve the interpretability for convergence guarantee, training transparency, and intrinsic decision-interpretation.
In comparison with state-of-theart benchmarks including TRPO-IPO, PCPO and CRPO, we empirically verify that AWaVO offers a reasonable trade-off between high performance and sufficient interpretability.
arXiv Detail & Related papers (2023-07-13T22:52:22Z) - On Uncertainty Calibration and Selective Generation in Probabilistic
Neural Summarization: A Benchmark Study [14.041071717005362]
Modern deep models for summarization attains impressive benchmark performance, but they are prone to generating miscalibrated predictive uncertainty.
This means that they assign high confidence to low-quality predictions, leading to compromised reliability and trustworthiness in real-world applications.
Probabilistic deep learning methods are common solutions to the miscalibration problem, but their relative effectiveness in complex autoregressive summarization tasks are not well-understood.
arXiv Detail & Related papers (2023-04-17T23:06:28Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - RISE: Robust Individualized Decision Learning with Sensitive Variables [1.5293427903448025]
A naive baseline is to ignore sensitive variables in learning decision rules, leading to significant uncertainty and bias.
We propose a decision learning framework to incorporate sensitive variables during offline training but not include them in the input of the learned decision rule during model deployment.
arXiv Detail & Related papers (2022-11-12T04:31:38Z) - On the Complexity of Adversarial Decision Making [101.14158787665252]
We show that the Decision-Estimation Coefficient is necessary and sufficient to obtain low regret for adversarial decision making.
We provide new structural results that connect the Decision-Estimation Coefficient to variants of other well-known complexity measures.
arXiv Detail & Related papers (2022-06-27T06:20:37Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Reliable Off-policy Evaluation for Reinforcement Learning [53.486680020852724]
In a sequential decision-making problem, off-policy evaluation estimates the expected cumulative reward of a target policy.
We propose a novel framework that provides robust and optimistic cumulative reward estimates using one or multiple logged data.
arXiv Detail & Related papers (2020-11-08T23:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.